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Fig. 1. Novel view synthesis results for unseen objects. Our system synthesizes novel view from a single image for unseen objects. We obtain detailed
generations, while respecting the appearance of the region that is visible in the input image by maximizing reuse of source pixels.

We present a method for generating consistent novel views from a single
source image. Our approach focuses onmaximizing the reuse of visible pixels
from the source image. To achieve this, we use a monocular depth estimator
that transfers visible pixels from the source view to the target view. Starting
from a pre-trained 2D inpainting diffusion model, we train our method on
the large-scale Objaverse dataset to learn 3D object priors. While training we
use a novel masking mechanism based on epipolar lines to further improve
the quality of our approach. This allows our framework to perform zero-
shot novel view synthesis on a variety of objects. We evaluate the zero-shot
abilities of our framework on three challenging datasets: Google Scanned
Objects, Ray TracedMultiview, and Common Objects in 3D. See our webpage
for more details: https://yashkant.github.io/invs/
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1 INTRODUCTION
Synthesizing novel views from a single image has broad applications
in the computer vision fields, including object reconstruction for
Augmented and Virtual Reality [Choi et al. 2019; Gao et al. 2021;
Tucker and Snavely 2020], animating humans in the game andmovie
industry [Bhatnagar et al. 2019; Hu et al. 2021a], and environment
understanding in robotics [Hu et al. 2021b; Wiles et al. 2020], etc.
However, generating high-fidelity novel views from one image
is a longstanding challenging problem, as the image generation
algorithm needs to infer the correct geometry from a partial ob-
servation of an object. Existing literature still struggles to build
the generic framework to reconstruct high-quality 3D objects for
image rendering. For instance, some studies require a manual 3D
prior, such as human bodies [Liao et al. 2023; Xiu et al. 2023] and
faces [Jiang et al. 2018; Kemelmacher-Shlizerman and Basri 2010]
for reconstruction, limiting the generation to specific categories.
Other approaches suffer from inadequate reconstruction quality
when dealing with single images [Chen andWilliams 1993; Debevec
et al. 1996; Shih et al. 2020] and often require multiple views as
input [Martin-Brualla et al. 2021; Mildenhall et al. 2020], which may
not always be available.
To tackle such a problem, we first step back to understand why

we, as humans, can understand how objects should look in any
view direction by just viewing the object from a single view. The
reason might be that the 3D prior knowledge equipped by humans is
obtained by observing a huge number of objects from various view-
points in the real world. Thus, leveraging the knowledge learned
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from different objects can be a solution for accurately reconstructing
objects. Recently, the emerging efforts on large-scale text-to-image
diffusion models [Ramesh et al. 2022, 2021; Rombach et al. 2022;
Saharia et al. 2022] prove the capability of learning a generic object
prior by training on large-scale image datasets, e.g., LAION [Schuh-
mann et al. 2022]. However, these models operate in the 2D domain
and lack precise control over camera view directions, limiting their
effectiveness in view synthesis tasks.
This work empowers the pre-trained large-scale text-to-image

diffusion model with the ability for camera viewpoint control to
generate novel views.Wemake the following contributions: first, we
attempt to reuse pixels from the input view when camera views are
not significantly far away. This is achieved by back-projecting such
pixels into the 3D space using monocular depth and reprojecting
them back onto the novel view. Second, we apply inpainting to re-
cover the missing regions by leveraging Inpainting Stable Diffusion
(ISD) [Rombach et al. 2022]. However, naïvely applying ISD fails
to generalize well to the masks that arise from the reprojection
procedure since the ISD model is trained with masks that randomly
cover a part of the image. Therefore, we propose to train ISD on a
dataset in which we can compute such masks easily. One prominent
choice is a dataset of 3D assets, e.g., Objaverse [Deitke et al. 2023],
which can be rendered from multiple views and for which such
masks can be computed. After training, our method can predict
missing pixels in the novel view image, while at the same time
preserving pixels that are initially visible. We abbreviate our method
as iNVS which stands for inpainting-driven Novel View Synthesis.

We conduct experiments on synthetic and real datasets, and find
that our method can achieve strong novel view synthesis (NVS)
results from single images as shown in Figure 1. We conduct ab-
lative and failure mode analyses which demonstrates that a good
monocular depth estimator is important to preserve structure and
allow maximal reuse of source pixels.

2 RELATED WORKS
Novel View Synthesis in Space. Novel view synthesis is a long-
standing problem in computer vision and graphics. Early methods
rely on the images frommultiple viewpoints and attempt to incorpo-
rate the knowledge from epipolar geometry to perform smooth inter-
polation between the different views [Chen and Williams 1993; De-
bevec et al. 1996]. One of the important milestones in novel view syn-
thesis is the introduction of Neural Radiance Fields (NeRFs) [Milden-
hall et al. 2020]. NeRFs can synthesize smooth interpolations be-
tween different views with the help of volumetric rendering. Since
then, numerous improvements have been introduced to improve
the original design [Barron et al. 2021; Chen et al. 2021; Kuang et al.
2022; Wang et al. 2021; Zhang et al. 2020]. However, most of them
share the same limitation of relying on multiple views for learning
3D representation.
Newer works have demonstrated that using deep networks is a

promising approach for synthesizing novel views from few images
owing to their generalization capabilities [Chan et al. 2023; Deng
et al. 2023; Mirzaei et al. 2023; Sajjadi et al. 2022; Zhou and Tulsiani
2023]. In its limit, this approach allows for generating novel views
given exactly a single image [Gu et al. 2023; Shen et al. 2023; Shih et al.

2020; Tang et al. 2023; Wiles et al. 2020] and we adapt this setting
in our work. Zero123 [Liu et al. 2023] proposes to fine-tune Stable
Diffusion for NVS task. They condition diffusion both on the source
image and on the CLIP embedding of the source image. However,
this method largely ignores the inability of U-Net [Ronneberger
et al. 2015] networks to generate output that is not aligned with the
source [Siarohin et al. 2019a,b]. In contrast, our method relies on
geometry clues to align the source and target views. This helps us
to preserve the content from the source image well.
Novel View Synthesis in Time. Video generation conditional

on one or more input image(s) can be seen as a novel view synthesis
task with generated images unrolling both in space and time. Prior
works [Denton and Fergus 2018; Finn et al. 2016; Hsieh et al. 2018;
Villegas et al. 2017; Vondrick and Torralba 2017; Wang et al. 2017]
in this domain proposed the use of spatiotemporal conditioning
to handle dynamic scenes. More recent works have trained on
large indoor scene and video datasets further improving quality
of generations task [Koh et al. 2021; Lee et al. 2021; Ye et al. 2019;
Yu et al. 2022].

Our work is particularly inspired by InfiniteNature and Infinite-
Nature Zero works [Li et al. 2022a; Liu et al. 2021] which utilize
softmax-splatting [Niklaus and Liu 2020] for synthesizing infinite
videos of nature with a fly-through camera. Recent works in this
space have tackled generation of novel views with full 360-degree
camera control [Chai et al. 2023], as well as learning domain-specific
dynamics of abstract scenes [Mahapatra and Kulkarni 2022], and
very recently general dynamic prior from largescale videos [Li et al.
2023].
3D Generative Models. The recent surge in the quality and di-
versity of generations orchestrated by 2D image diffusion models
poses the question of whether the prior knowledge learned by these
models can be used for generating 3D objects and scenes. Indeed,
diffusion models have some textual control over the viewpoint. For
example, DreamBooth [Ruiz et al. 2023] shows that the diffusion
model can properly react to the words "front", "back", and "side"
words the prompt. The seminal work that exploits 2D diffusion
for 3D generation, DreamFusion [Poole et al. 2023], proposes to
optimize NeRF representation by judging the novel view generations
with the large-scale pre-trained text-to-image diffusion model [Sa-
haria et al. 2022]. Several follow-up works [Chen et al. 2023a; Lin
et al. 2023] improve the resolution and quality of the resulting
3D assets. On the other hand, Dreambooth3D [Raj et al. 2023]
introduces additional image control. Although these works can
generate reasonable novel views, they require a lengthy optimization
process.
Additionally, several works [Chen et al. 2023b; Richardson et al.

2023] have proposed to utilize stable diffusion for mesh texturing.
TEXTure [Richardson et al. 2023] uses 2D diffusion models to se-
quentially in-paint novel regions over the existing mesh, projecting
results via a differentiable renderer. Text2Tex [Chen et al. 2023b]
extends this strategy with an automatic viewpoint-finding approach
for optimized re-projection. In both of these works, Stable Diffusion
utilizes text as conditioning, which provides only limited control
over the generation.
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Fig. 2. Epipolar mask and partial view generation strategy. Starting
with a source view, we use a pre-existing monocular depth estimator to
calculate the distance of each point in the image from the camera, creating
a depth map. We then use this depth map to "unproject" the 2D image into
3D space, generating a partial point cloud. Next, we take the partial point
cloud and "reproject" it onto the target view, essentially projecting the 3D
points back onto a 2D image from a different angle. As we do this, we also
generate a "visibility mask" which identifies any new areas that become
visible in the target view that were not visible in the source view.

3 METHOD
In this section, we introduce the overall task setup (Sec. 3.1), the strat-
egy used for generating inputs to the inpainting network (Sec. 3.2),
three different losses used throughout training (Sec. 3.3), and our
inference technique (Sec. 3.4).

3.1 Overview
Novel View Synthesis Task. Given a single RGB image of a 3D
asset (source view) I𝑠 ∈ Rℎ×𝑤×3, and the corresponding camera
pose C𝑠 ∈ R3×4, we aim to generate a target view I𝑡 ∈ Rℎ×𝑤×3 of
this asset from a novel viewpoint, say C𝑡 ∈ R3×4.
Inpainter Inputs. We start by preparing inputs for the inpainting
model, which takes in a partial view of the scene as well as a
binary mask that denotes the region to be inpainted. We then
obtain source view depth D𝑠 ∈ Rℎ×𝑤 , which is available for our
synthetic training set, and can be calculated using an off-the-shelf
monocular depth estimator [Bhat et al. 2023] during inference. Using
this depth map, we warp the pixels from the source to the target
viewpoint by creating a partial target view I𝑠→𝑡 ∈ Rℎ×𝑤×3. We
train our ISD model to inpaint the missing regions of this partial
view. Additionally, we provide the inpainter network with a mask
M𝑠→𝑡 ∈ Rℎ×𝑤 that indicates parts of the image which require
inpainting.
Training and Inference. We train our iNVS model intialized from
the Stable Diffusion inpainting checkpoint1 on source-target pairs
sampled at random from 20M rendered views of the largescale
synthetic Objaverse [Deitke et al. 2023] dataset. The finetuning
process is outlined in Sec. 3.3. Finally, we also modify the DDIM
inference which helps to significanly reduce artifacts in the NVS
generations, described in Sec. 3.4.

1https://huggingface.co/runwayml/stable-diffusion-inpainting

Fig. 3. Inpaintermodel training using denoising, and boundary losses.
Inpaining Stable Diffusion (ISD) accepts a noised target view as well as
a partial target view and epipolar mask. All three of these inputs are
concatenated before they are fed into the diffusion. Instead of the text
condition we use CLIP [Radford et al. 2021] embedding of the source view,
that is provided to the ISD through cross attention layers. The final generated
image is compared against ground truth with 𝐿2 loss, moreover to enforce
object shape discovery we introduce additional boundary mask loss.

3.2 Generating Partial View and Epipolar Mask
Warping source view using depth. Next, we describe how to
unproject the pixels from source view I𝑠 into 3D space, and then
reproject them into target view I𝑡 (a.k.a. warping). Let any source
pixel from I𝑠 be p𝑠 = [𝑥,𝑦, 1] defined in homogenous coordinates.
We can unproject it into 3D world space by:

p𝑤 = R𝑠 · 𝑑𝑠 · K−1
𝑠 p𝑠 + T𝑠 , (1)

whereK𝑠 ∈ R3×3 is the source view camera intrinsic,C𝑠 = [R𝑠 |T𝑠 ] ∈
R3×4 is the source camera, and 𝑑𝑠 ∈ R is the scalar depth value for
the point p𝑠 . Finally, world space point p𝑤 can be reprojected in the
target view with camera as:

p𝑡 = K𝑡 · 𝑑−1𝑡 · R−1
𝑡 · (p𝑤 − T𝑡 ), (2)

where C𝑡 = [R𝑡 |T𝑡 ] is the target camera, 𝑑𝑡 ∈ R is scalar target
depth, and p𝑡 is target pixel in homogenous coordinates. Applying
the above transform for all foreground pixels in the source view can
obtain the partial target view I𝑠→𝑡 . Additionally, when reprojecting
points to the target view, we use forward softmax-splatting [Niklaus
and Liu 2020] similar to [Li et al. 2022b] to handle overlapping points
using z-values. In Figures 2 and 3, we visualize the warped target
outputs.
How to create inpainting mask? Reprojecting source pixels to
target view only gives us the information about the visible pixels of
the object. However, it does not tell the inpainting network anything
regarding which regions in the image are newly discovered and
which already exist. The simplest method to construct an inpainting
mask would be to use all pixels that are not part of the object in
the partial target view. However, we find that using such strategy
creates a very large inpainting mask, and subsequently ISD struggles
to generalize or maintain consistency with the source view.We show
results with this in Sec. 4.
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Inpainting mask with Epipolar Geometry. When a light ray
falls onto a particular pixel p𝑠 in the source view, it corresponds to
a line 𝑙𝑡 in the target view. This line is known as an epipolar line, as
illustrated in Fig. 2. It is worth noting that only a portion of this line
in the target view is obstructed, while the rest remains visible. The
point p𝑤 precisely determines which part is obstructed. Anything
preceding p𝑤 is visible, whereas anything following it is obstructed.
To create the inpainting or visibility mask, we generate rays from
each pixel in the source view to the target view until they intersect
with the reprojected point. This process yields M𝑠→𝑡 , which we
refer to as the Epipolar Mask. Fig. 2 provides a visual depiction of
this procedure along with the resulting mask.
Using smooth inpaintingmaskusing ray angles.When creating
the epipolar inpainting mask, instead of using a binary value of
0/255 (black/white) at each pixel, we use a smooth value (linearly
interpolated) between the source and target camera ray angle at the
corresponding 3D world point (projected onto this pixel). Providing
this inpainting mask indicates to the ISD how much camera angle
variation has happened at each point (180 degrees is black, 0 degrees
is white). This information is used while training and helps the
inpainter ignore/overwrite flipped pixels. Figure 5 shows a visual
example of this.

3.3 Training iNVS: Inpainter for Novel View Synthesis
Denoising Novel Views. Equipped with the partial target view and
the epipolar mask highlighting regions to be inpainted, we can now
train our inpaintingmodel. Concretely, our ISD takes as conditioning
the epipolar maskM𝑠→𝑡 , partial target view I𝑠→𝑡 , as well as the CLIP
embedding of the source view𝑋𝑠 , and it is trained to denoise a noisy
target view I𝑡 + 𝜖 . Following previous works [Dhariwal and Nichol
2021; Rombach et al. 2022], we utilize epsilon parameterization of
diffusion and optimize our network with the following loss:

𝐿2 = ∥𝜖 − ISD (I𝑡 + 𝜖,M𝑠→𝑡 , I𝑠→𝑡 , 𝑋𝑠 )∥2 . (3)

Encoding Source Views with CLIP. We replace the text-encoder
of CLIP [Radford et al. 2021] used in the Stable Diffusion model
with its image-encoder, to condition generation on source view I𝑠 .
Since the source view does not align well with the target view in
RGB image space, we choose to formulate the conditioning via
cross-attention instead of using concatenation, unlike previous
work [Watson et al. 2022].
Stricter Boundary Loss. Stable Diffusion inpainting model is
trained on real images with diverse backgrounds, and we find
that it struggles to generate uniform solid color (white or black)
backgrounds. It shows an affinity towards inpainting backgrounds
with patterns, or enlarges the object boundaries to cover entirety of
inpainting mask. To tackle this issue, we propose a loss re-weighting
that puts more emphasis on target regions where the model has to
discover object boundary. Concretely, we introduce re-weighting
coefficient𝑊 [p𝑡 ] = 1 if p𝑡 is a pixel that falls within the boundary
of known regions, and𝑊 [p𝑡 ] = 2 if p𝑡 is a pixel where the boundary
is unknown (as shown in Fig. 3). Finally, we obtain the re-weighted
loss:

𝐿𝑊 = ∥𝑊 (𝜖 − ISD(I𝑡 + 𝜖,M𝑠→𝑡 , I𝑠→𝑡 , 𝑋𝑠 ))∥2 . (4)
Training on early denoising steps.We observe that ISD mostly
struggles to decode the shape of the object, while reasonable textures

can be obtained even with non-finetuned ISD when using ground
truth boundary masks [Chen et al. 2023b]. We find that during
inference denoising, the shape boundary is discovered much earlier
compared to texture, so we additionally fine-tune ISD by sampling
noise levels in the first 10% of the denoiser schedule.

3.4 Inference
Rescale and Recenter. At inference time we wish to generate a
novel view of the object from a single source view. Since we do not
have ground truth source view depth we rely on monocular depth
predictor ZoeDepth [Bhat et al. 2023]. However, depth estimators
can predict object depth only up to unknown scale, hence, we
recenter the projected world points to the origin and rescale them
into a cube, which follows the setup used in rendering our dataset.
Guiding Inference using Partial Target View.We observe that
instead of starting the backward denoising process from pure noise,
we can significantly boost the quality of the generated views by
starting with a noisy version of the image I𝑠→𝑡 (see Sec. 4.5).

4 EXPERIMENTS
In this section, we provide details on our training and evaluation
datasets (Sec. 4.1, Sec. 4.2), compare our method to three NVSmodels
(Sec. 4.3), and provide an ablation study (Sec. 4.5) of each component.

4.1 Training Setup.
Objaverse and Rendering Setup. To train iNVS we require paired
data consisting of source and target views. To generate this data,
we utilize the extensive Objaverse dataset, which contains nearly
800,000 3D assets. We employ Blender as our rendering software
and begin by recentering all scenes at the origin. Additionally, we
rescale the bounding box of each scene to fit within a [−1, 1]3
cube. For each object in the dataset, we randomly generate 24
camera viewpoints within predefined boundaries. The radius of
the viewpoint is sampled from a range of 3 to 4, and the field of view
(FoV) is set to 50 degrees. Using these viewpoints, we render both
the images and corresponding depth maps. We utilize the Cycles
engine in Blender and employ 128 samples per ray for rendering.
All images are rendered at a resolution of 512 × 512 pixels.
Selecting good camera poses. To add diversity to the lighting
conditions, we randomly sample lighting from a collection of 100
environmental maps. These maps provide a range of indoor and
outdoor lighting conditions with varying intensity levels. It’s worth
noting that in the Objaverse dataset, most assets are oriented with
the Z-axis pointing upwards. Consequently, synthesizing the object
from extreme bottom or top view angles can be challenging. For
instance, when objects are placed on a platform, viewing them
from below makes it almost impossible to accurately determine
the opposite view without additional information. To address this
issue, we empirically determine that sampling the polar angle 𝜃
from a uniform distribution between -65 and 75 degrees provides
reasonably accurate views on average. We sample the azimuth angle
𝜙 randomly between 0 and 360 degrees.

By utilizing all 800,000 assets in the Objaverse dataset, we render
a total of 19 million images to train our iNVS model.
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Table 1. Comparison with baselines on Google Scanned Objects dataset.

# Method PSNR ↑ SSIM ↑ LPIPS ↓
mask unmask mask unmask

1 Point-E 8.90 12.04 0.18 0.82 0.25
2 Shap-E 10.39 12.18 0.30 0.82 0.29
3 Zero-1-to-3 14.74 14.70 0.34 0.84 0.25

4 Original ISD 15.03 13.25 0.09 0.49 0.38
5 iNVS (ours) 18.95 19.83 0.30 0.80 0.24

Table 2. Comparison with baselines on Ray-traced Multiview data.

# Method PSNR ↑ SSIM ↑ LPIPS ↓
mask unmask mask unmask

1 Point-E 7.40 10.44 0.14 0.67 0.41
2 Shap-E 8.35 9.74 0.17 0.65 0.48
3 Zero-1-to-3 9.09 8.29 0.16 0.58 0.50

4 Original ISD 14.61 11.25 0.09 0.27 0.65
5 iNVS (ours) 16.83 17.82 0.09 0.5 0.49

Table 3. Comparison with baselines on Common Objects in 3D dataset.

# Method PSNR ↑ SSIM ↑ LPIPS ↓
mask unmask mask unmask

1 Point-E 9.37 10.10 0.22 0.72 0.38
2 Shap-E 10.67 10.01 0.33 0.73 0.42
3 Zero-1-to-3 12.32 9.91 0.33 0.69 0.42

4 Original ISD 16.43 13.56 0.24 0.46 0.44
5 iNVS (ours) 17.58 17.39 0.33 0.65 0.36

Model and Training details. We performed fine-tuning on the
pretrained Inpainting Stable Diffusion (ISD) v1.5 checkpoint to
adapt it for our task. This model is capable of generating high-
resolution images with dimensions of 512 × 512, utilizing a latent
space of dimensions 64 × 64 × 4. During the fine-tuning process,
we employed a sequential training approach, consisting of three
stages with separate losses previously introduced: a) denoising, b)
boundary loss, and c) early steps training. Our final model was
trained on 96 A100 GPUs with each stage training over 7 days.

4.2 Evaluation
Datasets. We evaluate how well iNVS generalizes at generating
novel target views across three different datasets. Specifically, we
use two synthetics datasets, Google Scanned Objects (GSO) [Downs
et al. 2022; ?], and Ray-Traced Multi-View (RTMV ) [Tremblay et al.
2022]. The GSO dataset contains nearly one thousand photorealistic
3D models, which we render using Blender following the same
setup used for generating training data (described in 4.1). The RTMV
dataset contains high quality renderings of nearly 2000 scenes from

4 different sources, and we filter out the scenes that contain GSO
objects. Finally, we also evaluate on real videos from the Common
Objects in 3D CO3D [Reizenstein et al. 2021] dataset, which is a
dataset of 19,000 videos of common objects spanning 50 categories.
Metrics. Following prior work [Liu et al. 2023], we compare iNVS
and baselines with three different metrics covering different aspects
of image similarity: PSNR, SSIM [Wang et al. 2004] and LPIPS [Zhang
et al. 2018]. During evaluation, for every object (or scene) we sample
two random views I𝑠 and I𝑡 along with their camera poses C𝑠

and C𝑡 . Next, starting from I𝑠 we can compute relative camera
transformation and generate a target view.
Masked Metrics. For PSNR and SSIM metrics we find that filtering
out background (using the ground truth mask) before comparison
helps to avoid spurious gains, hence we report masked metrics.

4.3 Baseline Comparisons
Zero-1-to-3 [Liu et al. 2023] is an image and camera pose condi-
tioned diffusionmodel which leveraged a pretrained Stable Diffusion
called Image Variations [Labs 2023] and finetuned it on Objaverse
renders. Unlike our method, Zero-1-to-3 is trained to generate novel
views from scratch, and is prone to cause inconsistency between
source and target views (see results for more details). We use the
official codebase2 and checkpoints with our datasets for evaluation.
Point-E [Nichol et al. 2022] is an image-conditioned diffusion
model which operates over 3D point clouds to generate objects.
We use the official codebase and checkpoint3, and use the settings
mentioned in the paper to generate point clouds with 4,000 points.
We render the point cloud from the target viewpoints for novel
views.
Shap-E [Jun and Nichol 2023] is a conditional generative model
for 3D, which directly outputs the parameters of implicit functions
that can be rendered directly as neural radiance fields. It is a two-
stage model that involves generating a latent code for each 3D asset
and then uses a diffusion model to denoise this latent code. We use
the official codebase and checkpoint4, and render outputs as neural
radiance field from the target viewpoint.
Our method achieves good PSNR and comparable LPIPS.We
find that our method achieves the higher PSNR and comparable
LPIPS scores compared to all other baselines on the Google Scanned
Objects (GSO) and Common Objects in 3D (CO3D) benchmarks
(Table 1 and 2). This indicates that our method performs well in
terms of noise reduction and perceptual similarity in both synthetic
and real data scenarios. The CO3D dataset consists of real-world
views captured from free-form videos, while the GSO dataset con-
tains virtual scans of 3D photorealistic assets. On the Ray-traced
Multiview (RTMV ) dataset, we find that our method is able to
outperform all baselines in PSNR, but falls short on the SSIM and
LPIPS metrics (shown in Table 2). We attribute this low performance
to out-of-distribution variations in lighting across our rendering
setup (described in Section 4.1 compared to RTMV ).
Structural Similarity is compromised in generated views. It
is worth mentioning that our method consistently underperforms

2https://github.com/cvlab-columbia/zero123
3https://github.com/openai/point-e
4https://github.com/openai/shap-e
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Fig. 4. Comparison with SoTA methods on NVS task (GSO dataset). The first column is input, columns two to four are baselines: Point-E [Nichol et al.
2022], Shap-E [Jun and Nichol 2023] and Zero-1-to-3 [Liu et al. 2023]. Fifth column is untrained ISD, and last two columns is iNVS and ground truth.

Source View Partial Target View Epipolar Mask iNVS result

Fig. 5. Partial target view and epipolar masks on CO3D dataset. The
first column shows input. Second column show the warped source view. The
third column demonstrates the smooth inpainting epipolar mask. Notice
that the inpainting mask for cement dump truck (second row) is much
darker compared to the race car (first row) due to larger angle variation
(details in Sec. 3.2). Last column shows generated result.

on the SSIM metric across all datasets. We find that this occurs
primarily due to misalignment in monocular depth estimator. We
observe that under significant viewpoint variations, the monocular

depth estimator fails to generate consistent depth across different
parts of the objects. This inconsistency leads to distortions in the
generated images and lower SSIM scores (see Section 4.6).
Masked metrics help disambiguate performance across base-
lines.We notice that Shap-E and Point-E often produce tiny objects,
and their white background pixels (matching the target) lead to
majority of their unmasked gains, thus outperforming Zero123
quantitatively. However, using masked metrics we notice these
trends change (see PSNR and SSIM in Tables 2 and 3).

4.4 Qualitative Results
We present the visualization of the results obtained from our method
and the baselines in Figure 4 and draw the following conclusions:
Preservation of Text and Fine Details.We employ monocular
depth to unproject pixels into 3D space and warp them to the
target viewpoint. This technique enables us to preserve a significant
amount of textual information and finer details across multiple view-
points. This is clearly demonstrated in Row 1, where our method
successfully retains the text "Whey Protein" between the source
and target views, unlike the Zero-1-to-3 baseline. Additionally, our
method shows less distortion in the structural details of objects, as
seen in Row 2, where Zero-1-to-3 alters the toaster oven into grills,
while our method accurately preserves this detail. The benefits of
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Source View Ground TruthNo Epipolar
Mask

No Inference
Guidance

No Image
Conditioning

No Boundary
Loss

o iNVS (Ours)

Fig. 6. Ablation Study of iNVS on GSO dataset.We describe each column from left to right. First, we show input image. Second, we show generation
without the epipolar mask. Third, we show generation without inference guidance (Section 3.4). Fourth, we skip source-view conditioning via CLIP during
inference. Fifth, we show a variant of our method without boundary loss 𝐿𝑊 . The last two columns show result from iNVS and ground truth.

this technique is further highlighted in Fig. 5, where we show that
for many viewpoints most of the partial target view can be directly
reused to significantly simplify the job of inpainting network.
Consistent synthesis for single object across multiple views.
In Figures 8 and 9, we show NVS results across many different
objects from a fixed source view, and randomly selecting six tar-
get views. We find our generations to be largely coherent across
viewpoints, and more stochastic under large viewpoint variations.
Faithful Compliance with Viewpoint Variations: Another chal-
lenge in novel view synthesis is maintaining control over the gen-
erated views, particularly when dealing with significant viewpoint
variations. Rows 3 and 4 exemplify this issue, showing that Zero-1-
to-3 struggles to exercise accurate control over the generated images,
resulting in the android and the shoe being created from incorrect
viewpoints.
Outperforming 3D Diffusion Models: Our method surpasses the
performance of the Point-E and Shap-E baselines, both of which
are variants of 3D diffusion models. We believe that utilization of a
large, pretrained inpainting model in our method contributes to the
generation of visually superior results.

4.5 Ablation Study
We conduct a series of ablation experiments and analysis to evaluate
the effectiveness of our proposed changes and additional training.
The quantitative performance results for all metrics are reported in
Table 4, and visuals are presented in Figure 6.
EpipolarMask helps to constrain NVS generation. The epipolar
mask allows us to control the extent of the inpainting necessary
in the warped image, as depicted in Figures 2 and 3. When we
omit the use of this mask, the inpainting model faces challenges
in understanding the relative orientation between the source view
and the target view. As a result, the performance of the model
is compromised, leading to distorted and exaggerated generated
images.
Guiding denoising inference with partial target view yields
significant benefits. We find that during the 500 step DDIM infer-
ence iNVS generates a rough outline of the target view within the
first 100 steps. Given that we have a partial target view available
after warping the source pixels to the target viewpoint, we utilize it
as guidance. Specifically, we replace the output of the first 10 DDIM
steps with a noised version of the partial target view, similar to
Repaint [Lugmayr et al. 2022]. This approach proves to be immensely
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Table 4. Ablation Study. First row is our method iNVS. The second row
shows our method where the epipolar mask is replaced with a full mask
that covers all non-splatted pixels. The third row is our method without
using a partial target view as diffusion input in the first steps as guidance.
The fourth row is our method without conditioning on the source image.
The fifth row demonstrates our method without 𝐿𝑊 . Finally we highlight
our model with the original training schedule. Also for the reference we
show the performance of the original unaltered ISD.

Method PSNR ↑ SSIM ↑ LPIPS ↓
iNVS (ours) 19.83 0.8 0.24
- epipolar mask 17.39−2.44 0.65−0.15 0.36+0.12
- inference guidance 17.48−2.35 0.70−0.1 0.31+0.07
- image conditioning 16.57−3.26 0.70−0.01 0.30+0.06
- boundary loss 19.10−0.73 0.77−0.03 0.27+0.03
- early steps training 19.70−0.13 0.78−0.03 0.26+0.02
Original ISD 13.25−6.58 0.49−0.31 0.38+0.14

helpful in preventing the inpaintingmodel from generating arbitrary
boundaries, shown in Figure 6, third column.
Without image conditioning our model is unable exploit
source view information well. When there is a significant varia-
tion in viewpoint between the target and source images, the warped
image becomes less informative for the inpainting process. In such
scenarios, it becomes essential for the inpainting model to heavily
rely on the source view and the learned 3D priors for accurate
autocompletion. By removing the conditioning on the source view,
the model’s ability to generate high-quality and consistent views is
compromised, as demonstrated in Figure 6, fourth column.
Boundary loss enhances generations. Furthermore, we find
that enhancing the boundary loss improves the generation quality
leading to consistent visuals, evident from Figure 6, fifth column.

4.6 Current Limitations
Imprecise monocular depth can lead to structure and texture
problems.We notice that ZoeDepth [Bhat et al. 2023] can generate
depth maps that distorts flat surfaces, which leads to unrealistically
deformed surfaces or incorrect texture predictions. We put visuals
of these in failure modes #1 and #2 in Figure 7.
Inference guidance can occasionally lead to incomplete or
flipped output images. Recall from Section 3.4 that we use the
noisy partial target view for the first 10 DDIM steps. However,
since this view is incomplete and may contain flipped pixels (under
high camera variations), this trick occasionally creates incomplete
outputs or lead to reversed-view generated images. We put visuals
of these in failure modes #3 and #4 in Figure 7.

5 CONCLUSION
In this work we propose an approach for novel view synthesis that
provides a significant advancement in terms of quality of the results
and the coverage of the different object categories. Our approach
combines recent advancement of diffusion models with epipolar
geometry. By training on a large scale Objaverse dataset we were
able to re-purpose Inpainting Stable Diffusion for the novel view

synthesis task. Surprisingly we found that after finetuning our
method gained an understanding of the underlying shape, even
for the objects that were not seen during the training. Our approach
demonstrates sizable improvement over state-of-the-art novel view
synthesis methods, especially when considering texture preserva-
tion from the input image. One limitation of our approach is inability
to generate consistent textures in the regions that are not visible in
the original image. This however opens the exciting opportunity
for future research, which can explore auto-regressive schemes of
novel view generation.

ACKNOWLEDGMENTS
We thank Ziyi Wu for helping with aligning visuals of Point-E and
Shap-E baselines, as well as organizing cited works. We also thank
Colin Eles for helping with infrastructure required for largescale
training, and Pratiksha Bhattasamant for reviewing early drafts
of this work. Finally, we would like to thank the Siggraph Asia
reviewing committee for their invaluable feedback.

8



iNVS: Repurposing Diffusion Inpainters for Novel View Synthesis SA Conference Papers ’23, December 12–15, 2023, Sydney, NSW, Australia

Fig. 7. Failure Modes. Left: Imperfect depth maps cause issues in structure and texture. Right: Inference time tricks can occasionally hinder generations.

View #4 View #5 View #6Input View View #1 View #2 View #3

Ground Truth

Ground Truth

Ground Truth

Fig. 8. Multiple novel views from single image.We show six randomly sampled camera views given an input image, and corresponding ground truth.
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View #4 View #5 View #6Input View View #1 View #2 View #3

Ground Truth

Ground Truth

Ground Truth
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Fig. 9. Multiple novel views from single image.We show six randomly sampled camera views given an input image, and corresponding ground truth.
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A TRAINING HYPERPARAMETERS

# Hyperparameters Value

1 Base Learning rate 1e-5
2 Learning rate decay N/A
3 Loss Type L1
4 Source-view / Inpaint Mask dropout 0.05
5 Classifier-free guidance 9.0
6 Effective batch size 1152
7 Effective batch size 1152
8 DDIM Steps 300/500
9 Partial View Guidance Steps 10
10 Boundary Loss Weight 2.0
11 CLIP Frozen False
12 Renders background color Black
13 Image Resolution 512
14 Learning rate linear warmup 100 steps

Table 5. Hyperparameter choices for iNVS.

B EXPERIMENT WITH DIFFUSION-BASED
MONOCULAR DEPTH NETWORK

Idea and Setup. Since incorrect predictions from monocular depth
network lead to failure cases, we trained a separate diffusion-based
monocular depth prediction network on the Objaverse dataset. For
this, we simply inflate the first convolution layer of Stable Diffu-
sion [Rombach et al. 2022] to take input RGB image as additional
conditioning via concatenation. The model is trained with L1 loss
to generate monocular depths, and it is initialized with pretrained
text-to-image Stable Diffusion weights.
Result. We found that the compression in latent-space of diffu-
sion model due to the VAE caused issues in the predicted depth
maps. This in turn led to jittery outputs and reprojections leading to
subpar performance. Since we trained only on Objaverse dataset,
we did not require explicit rescaling and recentering when using
predicted depth. We believe improvement in this setup could be
achieved by retraining the Autoencoders to reconstruct depth maps,
similar to [Stan et al. 2023]. We put visuals of this experiment in
supplementary video.
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