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Abstract

The popularity of Neural Radiance Fields (NeRFs) for

view synthesis has led to a desire for NeRF editing tools.

Here, we focus on inpainting regions in a view-consistent

and controllable manner. In addition to the typical NeRF

inputs and masks delineating the unwanted region in each

view, we require only a single inpainted view of the scene,

i.e., a reference view. We use monocular depth estima-

tors to back-project the inpainted view to the correct 3D

positions. Then, via a novel rendering technique, a bilat-

eral solver can construct view-dependent effects in non-

reference views, making the inpainted region appear consis-

tent from any view. For non-reference disoccluded regions,

which cannot be supervised by the single reference view, we

devise a method based on image inpainters to guide both

the geometry and appearance. Our approach shows su-

perior performance to NeRF inpainting baselines, with the

additional advantage that a user can control the generated

scene via a single inpainted image. Please visit our project

page.

1. Introduction

There has long been intense interest in manipulating im-

ages, due to the broad range of content creation use cases.

Object removal and insertion, corresponding to the image

inpainting task, is among the most studied manipulations.

Current inpainting models are capable of generating per-

ceptually realistic content that conforms to the surrounding

image. Yet, these models are limited to single 2D image

inputs; our goal is to continue progress in applying such

models to the manipulation of full 3D scenes.

The advent of Neural Radiance Fields (NeRFs) has made

transforming real 2D photos into realistic 3D representa-

tions more accessible. As algorithmic improvements con-
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Figure 1: Visualization of our 3D inpainting approach.

Starting from (i) a set of posed images (i.e., standard

structure-from-motion outputs), (ii) a multiview mask set

associated to (i), and (iii) a single inpainted reference image

from among (i), we produce a complete inpainted 3D scene,

via a novel NeRF fitting algorithm. By merely providing a

different reference image, which can be as simple as chang-

ing the text input, T, for a single-image text-conditioned

inpainter (e.g., [55]), a user can controllably generate 3D

scenes with the novel desired content.

tinue and computational requirements lessen, such 3D rep-

resentations may become ubiquitous. We are thus interested

in enabling the same manipulations of 3D NeRFs that are

available for images, particularly inpainting (see Fig. 1).

Inpainting in 3D is non-trivial for a number of reasons,

such as the paucity of 3D data and the need to account

for 3D geometry as well as appearance. Using NeRFs as

a scene representation comes with additional challenges.

First, the ªblack boxº nature of implicit neural represen-

tations makes it infeasible to simply edit the underlying

data structure based on geometric understanding. Second,

because NeRFs are trained from images, special consider-

ations are required for maintaining multiview consistency.

Simply independently inpainting the constituent images us-
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Figure 2: Sample independent inpaintings [55] for four dif-

ferent views of a scene in the SPIn-NeRF dataset [42], us-

ing the same prompt. The inpaintings are highly diverse,

including some semantic differences, not just textural ones.

ing powerful 2D inpainters yields viewpoint-inconsistent

imagery (see Fig. 2), leading to visually unrealistic outputs.

One approach is to attempt to resolve these inconsisten-

cies post hoc. For example, NeRF-In [34] simply combines

views via a pixelwise loss. More recently, SPIn-NeRF [42]

improved on this strategy by employing a perceptual loss

[84] instead. Yet, this fails when the inpainted views are

perceptually different (i.e., the textures are far apart, even

in the perceptual metric space). This limits applicability

in the case of complex appearances or novel object inser-

tion. For instance, recent diffusion-based inpainters (e.g.,

[55, 76]) can controllably hallucinate novel objects in 2D

inpaintings ± utilizing this capability is currently impossible

in the post hoc framework. In addition, this approach im-

pedes the preservation of specific desired details (i.e., inter-

image conflicts prevent conservation of exact textures).

In contrast, others have considered single-reference in-

painting (e.g., [34]): using only one inpainted view pre-

cludes inconsistencies by construction. However, this lack

of 3D information introduces a different set of challenges,

including (a) poor visual quality in views far from the refer-

ence, in part due to a lack of geometric supervision, (b) lack

of view-dependent effects (VDEs), and (c) disocclusions.

In this work, we utilize a single inpainted reference, thus

immediately avoiding view inconsistencies, and present a

novel algorithm for handling challenges (a-c). First, to

geometrically supervise the inpainted area, we utilize an

optimization-based formulation with monocular depth es-

timation. Second, we show how to simulate VDEs of non-

reference views from the reference viewpoint. This enables

a guided inpainting approach, propagating non-reference

colours (with VDEs) into the mask. Finally, we inpaint dis-

occluded appearance and geometry in a consistent manner.

We enumerate our contributions as follows: (i) a single-

reference 3D inpainting algorithm (depicted in Fig. 1),

which avoids visual quality deterioration at views far from

the reference; (ii) a unified method for constructing super-

vision for masked and disoccluded areas; (iii) a novel ap-

proach to generating VDEs in non-reference views, without

multiview appearance information; (iv) significant empiri-

cal improvements over prior work, not only in the unprece-

dented sharpness of novel inpainted views, but also in terms

of controllability, enabling users to insert novel objects into

3D scenes by simply providing a single inpainted 2D view.

2. Related Work

Image Inpainting. Inpainting 2D images has a long re-

search history [21, 9, 13, 5, 64]. Neural models represent

the state of the art, with advances in perceptual plausibil-

ity [61, 29, 20], multi-scale processing [18, 82, 73], novel

architectures [77, 29, 33, 75], and generative modelling

(e.g., adversarial [47, 85] or denoising diffusion [55, 36,

56, 45, 37]). To address the ill-posed nature of the inpaint-

ing problem, pluralistic inpainting methods construct mul-

tiple plausible outputs [85, 87, 55, 71]. Yet, all these meth-

ods are 3D unaware. In contrast, 3D-aware works are only

partially 3D [79], limited to simple foreground/background

scenarios [59, 22], or cannot synthesize novel views of the

inpainted result [86, 88]. In contrast, we inpaint in an inher-

ently 3D manner via NeRFs, allowing novel-view synthesis

of the inpainted scene.

NeRF Editing. Neural rendering [65] has received sig-

nificant attention following the success of NeRFs [41],

which combines differentiable volumetric rendering [15,

67] and positional encodings [12, 68, 62]. Rapid NeRF de-

velopments have improved visual quality [11, 2, 3, 32, 69],

fitting or inference speed [58, 6, 44, 80, 8, 14, 53, 27], and

data requirements [81, 72, 31, 74, 49, 19]. As NeRFs be-

come more accessible, editing them in 3D has become a

topic of interest. Recent works provide 3D scene editing ca-

pabilities [26, 43, 70, 78, 83, 35, 24, 28, 60, 10, 23, 30], but

either focus on non-inpainting tasks, consider different data

availability scenarios, or are limited to simple objects. The

first NeRF inpainting works are NeRF-In [34] and SPIn-

NeRF [42]. Both methods use 2D image inpainters as pri-

ors, and fill the unwanted regions of both the training views

and the rendered training depths, to guide the generation

of the inpainted NeRF. While NeRF-In [34] does not sys-

tematically consider the inconsistencies in the outputs of

3D-unaware image inpainters (except to reduce the num-

ber of reference views), SPIn-NeRF [42] suggests a relax-

ation based on a perceptual loss [84] to avoid blur artifacts.

Although the perceptual loss can handle inconsistencies in

the textures, it fails if the 2D inpainted views are semanti-

cally different (e.g., if one inpainted view contains a new

object). In contrast, our method only relies on a single in-

painted view as guidance, while handling VDEs using bilat-

eral solvers [4]. This not only enables us to use more pow-

erful image inpainters with greater creative capacity [55],

but it also allows the user to have more control over the

inpainted scene. Moreover, we optimize depth and appear-

ance in a unified manner, unlike prior works [34, 42], which

treat depth and appearance inpainting separately.
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3. Background: Neural Radiance Fields

NeRFs [41] are an implicit neural field representation

(i.e., coordinate mapping) for 3D scenes and objects, gen-

erally fit to multiview posed image sets. The basic con-

stituents are (i) a field, fθ : (x, d) → (c, σ), that maps

a 3D coordinate, x ∈ R
3, and a view direction, d ∈ S

2,

to a colour, c ∈ R
3, and density, σ ∈ R

+, via learnable

parameters θ, and (ii) a rendering operator that produces

colour and depth for a given view pixel. The field, fθ, can

be constructed in a variety of ways (e.g., [41, 58, 32, 3]);

the rendering operator is implemented as the classical vol-

ume rendering integral [39], approximated via quadrature,

where a ray, r, is divided into N sections between tn and

tf (the near and far bounds), with ti sampled from the i-th
section. The estimated colour is then given by:

Ĉ(r) =
N∑

i=1

Ti(1− exp(−σiδi))ci, (1)

where Ti = exp(−
∑i−1

j=1 σjδj) is the transmittance, δi =
ti+1 − ti, and ci and σi are the colour and density at ti.

Replacing ci with ti in Eq. 1 estimates depth, ζ̂(r), and dis-

parity (inverse depth), D̂(r) = ζ̂−1(r), instead.

4. Method

The inputs in our setup are n input images, {Ii}
n
i=1,

their camera transform matrices, {Πi}
n
i=1, and their corre-

sponding masks, {Mi}
n
i=1

2, delineating the unwanted re-

gion. We assume a single inpainted reference view, Ir,

where r ∈ {1, 2, . . . , N}, which provides the information

that a user expects to be extrapolated into a 3D inpainting

of the scene. We propose an approach to use Ir, not only to

inpaint the NeRF, but also to generate 3D details and VDEs

from other viewpoints as well. In § 4.1, we introduce the

use of monocular depth estimators to guide the geometry

of the inpainted region, according to the depth of the ref-

erence image, Ir. In § 4.2, we propose the use of bilateral

solvers [4], in conjunction with our view-substitution tech-

nique, to add VDEs to views other than the reference view.

See Fig. 3 for a depiction of our geometry supervision and

VDE handling. Since not all the masked target pixels are

visible in the reference, in § 4.3, we devise an approach to

provide supervision for such disoccluded pixels, via addi-

tional inpaintings.

Complete Loss Function. Our overall objective for in-

painted NeRF fitting is given by:

L =Lunmasked
rec + γmasked

depth Lmasked
depth + γmasked

rec Lmasked
rec + γdoLdo,

(2)

1IBRNet images in Fig. 3,5,9 by Wang et al. available in IBRNet [72]

under a CC BY 3.0 License.
2We assume that masks are given, but they can be obtained automati-

cally with interactive 3D segmentation methods [42, 54].
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Figure 3: Overview of our geometry supervision (§ 4.1) and

view-dependent effect (VDE) handling by view-substitution

(§ 4.2). Starting from the inpainted reference view, Ir,

and its mask, Mr, (upper-right inset) a disparity map is

computed and aligned with the current inpainted NeRF

scene (upper-middle inset), then used for masked depth

supervision via Lmasked
depth . To supervise view-dependent

colours in non-reference views, our view-substitution tech-

nique (§ 4.2.1), followed by bilaterally guided inpainting

(§ 4.2.2), obtains target colours (Îr,t; lower-right inset),

used for Lmasked
rec . Finally, unmasked areas of the NeRF can

be supervised with standard losses, Lunmasked
rec , from the un-

masked inputs (leftmost inset). Note that the masked su-

pervisory sources (for Lmasked
depth and Lmasked

rec ) are periodically

recomputed throughout fitting as the NeRF evolves.1

where Lunmasked
rec , Lmasked

depth , Lmasked
rec , and Ldo represent the

unmasked appearance loss, masked geometry loss, view-

dependent masked colour loss, and disocclusion loss, re-

spectively (detailed below). The latter three loss terms have

weights γmasked
depth , γmasked

rec , and γdo. Note that the supervi-

sion for Lmasked
depth , Lmasked

rec , and Ldo are computed every Ndepth,

Nbilateral, and Ndo iterations (and hence those losses are not

utilized until that many iterations have passed).

4.1. Supervising Reference View Geometry

In the first stage of our algorithm, fθ is supervised on

the unmasked pixels for Ndepth iterations, via the standard

NeRF reconstruction loss:

Lunmasked
rec = Er∼Runmasked

∥∥Ĉ(r)− CGT(r)
∥∥2, (3)

where Runmasked is the set of rays corresponding to the pix-

els in {Ii ⊙ (1 − Mi)}
n
i=1, and CGT(r) is the GT colour

for the ray, r. As a result, while the geometry and appear-

ance of the unmasked parts of the scene begin to converge,

the masked region remains under-fit (the masked area is not

fit via Ir at this point, as it makes altering masked values

in later stages more difficult). The only available guidance

for such masked pixels resides in Ir; however, this only pro-

vides single-view appearance information, which cannot di-

rectly contribute geometric supervision.
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Masked Reference Disparity. To address this chal-

lenge, we propose the use of a monocular depth estima-

tor [52, 51], D̃(·), to predict the uncalibrated disparity of the

source view, D̃r = D̃(Ir), and guide the geometry. How-

ever, the predicted reference depth, D̃−1
r , is non-metric, re-

sides in a different coordinate system, and may be inaccu-

rate, as it was predicted from a single frame. As a result, be-

fore supervising the disparity of the NeRF using D̃r ⊙Mr,

we need to align D̃r to our rendered NeRF reference dis-

parity, D̂r. Although under-fit on the masked pixels, D̂r

has reliable values for the unmasked pixels.

However, not all of the masked pixels are equally impor-

tant: areas close to the mask boundary need to be tightly

aligned, to ensure the mask edge is minimally visible in the

final results, whereas it is not critical to completely align

the depths far from the mask, since only the masked pixels

will receive supervision with the aligned reference dispar-

ity. Thus, we propose to align D̃r and D̂r for the reference

view on the unmasked pixels in a weighted manner, giving

higher weight to the points closer to the mask.

Weighted Disparity Alignment. Traditionally, a scale

a0 and an offset a1 are used to affinely transform 2.5D dis-

parity maps, D̃r, to a0D̃r + a11HW [52], where H and W
are the height and width of the input images, and 1HW is an

H ×W all-one matrix. We further increase the degrees of

freedom of the alignment to have a tighter alignment around

the mask edges. We use two additional H × W matrices,

H and V , where for a pixel p = (px, py), H(p) = px and

V(p) = py . Intuitively, these enable additional axis-aligned

ªtiltsº that improve fitting quality. Please see our supple-

mentary material for an illustration of H and V . Then, the

aligned predicted inverse depth is:

Dr = a0D̃r + a11HW + a2H+ a3V. (4)

Since the pixels closer to the mask are more important for

our inpainting application, we use the following weighted

objective function to solve for the scalars, ai:

Fwf({ai}i) =
∑

p∈Ir⊙(1−Mr)

w(p)
[
Dr(p)− D̂r(p)

]2
(5)

where p is an unmasked pixel from the source view, and

w(p) is the weight of p, which is the inverse of the distance

between p and the mask centre-of-mass.

While Dr has significantly improved alignment, mis-

alignments still tend to persist near the edges of Mr. We

thus conduct an additional optimization step, where we cor-

rect Dr to encourage greater smoothness around the mask,

yielding Dsmooth
r (details in the supplementary material).

Loss. After alignment and smoothing, Dsmooth
r ⊙Mr su-

pervises the masked region of the reference view, Ir, via:

Lmasked
depth = Er′∈Rmasked

[
D̂r(r

′)−Dsmooth
r (r′)

]2
(6)
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p
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r dp
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o
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t,i
)
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Figure 4: Depiction of our view-substitution technique,

which enables rendering from the reference viewpoint, but

with the view-dependent effects of a target viewpoint, by

simply substituting the directional input to the per-shading-

point neural colour field. Upper inset: given a shading point

position, xi, on a ray emanating from the reference camera

(with direction drp), we can obtain the corresponding ray di-

rection, dpt,i, that intersects xi from a target-image camera

(at ot). Lower inset: (left) standard inputs used to query the

NeRF for the colour, c(xi, d
p
r), at shading point xi; (right)

view-substituted inputs used to query the NeRF, obtaining

c(xi, d
p
t,i) as the colour instead.

Note that Dsmooth
r , is recalculated every Ndepth iterations to

utilize the latest fitted geometry, D̂r.

4.2. View-dependent Effects by View-substitution

Now that the inpainted region is being geometrically su-

pervised by the depth loss, Lmasked
depth , we can also supervise

the NeRF appearance in the masked region with Ir (see

§ 4.2.3). Here, we detach the gradients of the densities to

prevent the colour loss from affecting the geometry. How-

ever, supervision within the masked region from Ir alone

does not account for view-dependent changes (e.g., spec-

ularities and non-Lambertian effects). To correct this, we

propose an approach that enables adding view-dependent

effects (VDEs) to the masked area from non-reference

viewpoints, by correcting reference colours to match the

surrounding context of the other views.

In this section, we consider a target view, It ∈ {Ii}
n
i=1.

First, in § 4.2.1, we propose our view-substitution method,

to enable rendering the scene from the reference camera,

but with the colours of It. Then, we inpaint the residual

between this target-colour render and Ir, propagating the

image context of It into the masked area, including VDEs

(§ 4.2.2). Finally, this residual is applied to obtain corrected

reference colours, which are used in § 4.2.3 to supervise the

NeRF in masked areas of It.
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4.2.1 View-substitution

Our view-substitution technique enables looking at the

scene from the reference viewpoint, while changing the

shading point colours (i.e., ci in Eq. 1) during rendering to

have the colours of a target view. Intuitively, this allows us

to construct multiple ªversionsº of the reference view, each

with colours corresponding to the VDEs of a target view.

Fig. 4 shows an overview of our view-substitution

method. Consider a pixel, p, from the reference view, Ir.

During standard NeRF rendering, a ray is cast through the

scene, passing from the camera origin, or, through the pixel,

p. This ray is parameterized as x(t) = or + tdpr , with di-

rection dpr ∈ S
2. Next, shading points x1, x2, . . . , xn ∈ R

3

are sampled on this ray. Normally, for the i-th sample on the

ray, its coordinates, xi, and the view-direction, dpr , are fed to

the NeRF model to obtain the density, σ(xi), and the colour

from the reference viewpoint, c(xi, d
p
r). However, here, in-

stead of the reference view colours, we are interested in the

colours of the points as if they were viewed from the tar-

get camera. As a result, when computing the shading point

colour, we substitute the view direction, dpr , for the direc-

tion acquired by connecting the origin of the target view, ot,
and the shading point, xi. This direction is computed via:

dpt,i = (xi − ot)/∥xi − ot∥2, (7)

resulting in view-substituted shading point colours

c(xi, d
p
t,i) instead. We can then volume render from

the reference viewpoint across pixels, but with the view-

substituted target colours, to obtain rendered images Ir,t.
Such images have the structure of the reference view (e.g.,

edges), but the appearance (and thus VDEs) of the target

view. Please see our supplementary material for additional

details and visualizations.

4.2.2 Bilateral Solver for Residuals

At this point, before any supervision on the masked areas of

the target images has begun, the view-substituted rendering,

Ir,t, will likely be under-fit inside the mask, Mr, but should

have meaningful colours outside of the mask (see Fig. 5,

top-left). Consider the residual, ∆t = Ir − Ir,t, which

measures the difference between the reference and target

colours (from the reference viewpoint). We want to use the

values of this residual outside the mask to predict plausible

values for the residual inside of the mask. We rely on the

assumption that VDEs (encapsulated by the residuals) can-

not have high-frequency variations when there is no edge in

the reference view, Ir. In other words, if there is little im-

age contrast in a given region of Ir, we only expect smooth

changes in the VDEs of ∆t. This is a natural assumption, as

changes in materials and reflectance properties are usually

accompanied by image edges, demarcating the boundaries

Inpainted NeRF

View 

Substitution

Bilateral

Solver

View-Substituted

Image, I
r,t

Target Colour, ̂I
r,t

Inpainted Res., restMask, M
r

_

Reference View, I
r

Residual

_ I
r

Figure 5: Overview of our view-dependent effect (VDE)

handling approach. For each target, t, the scene is rendered

from the reference camera with target colours to get the

view-substituted image, Ir,t (top-left). A bilateral solver in-

paints the residual between the reference view and the view-

substituted image, resulting in the inpainted residual, rest
(bottom-right), which is subtracted from the reference view

to get the target colour, Îr,t (top-right). The discrepancy

between the target colours and the view-substituted images

provides supervision for the masked region.

between objects or object parts. The bilateral solver [4], de-

noted B, is thus an intuitive approach to inpainting the resid-

ual inside the mask, as it enables directly using the edges of

Ir for guidance. Briefly, B optimizes an image signal, bal-

ancing confidence-weighted reconstruction fidelity and bi-

lateral smoothness, guided by the structure of an additional

RGB reference image. This is analogous to ªdiffusingº in

pixel values from outside the mask [1], directed by the ref-

erence. In our case, B thus utilizes Ir as the reference input

(from which the edge guidance occurs through the bilateral

affinities), while using ∆t as the target (valid only outside

the mask). We set the confidence to the maximum possible

value (cmax) outside of the mask and to zero inside it. Then,

we run B to get the inpainted residual:

rest = B
(
Ir, Ir − Ir,t, (1−Mr)× cmax

)
. (8)

The target colours are then obtained as Îr,t = Ir−rest. Note

that rest equals ∆t outside the mask, but we only need its

values inside the mask for supervision. To ensure this super-

vision remains up-to-date with the changing NeRF, every

Nbilateral iterations, we re-render the view-substituted im-

ages, run B, and compute Îr,j ∀ j ∈ [1, n] (with Îr,r = Ir).

4.2.3 Supervision from the Reference View

Once the view-substituted (§ 4.2.1) and bilaterally inpainted

(§ 4.2.2) target renders, {Îr,j}
n
j=1, are available (after

reaching Nbilateral at least once), we are now able to super-

vise the masked appearances of the target images. Note that
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each such image Îr,t looks at the scene via the reference

source camera (i.e., has the image structure of Ir), but has

the colours (in particular, VDEs) of It. We utilize those

colours, obtained by the bilateral solver, to supervise the

target view appearance under the mask. To do so, we ren-

der each view-substituted image inside the mask (obtaining

Ir,t, as in § 4.2.1), and compute a reconstruction loss by

comparing it to the bilaterally inpainted output, Îr,t:

Lmasked
rec =

1

n

n∑

t=1

Er′∼Rr
masked

∥∥Ir,t(r′)− Îr,t(r
′)
∥∥2, (9)

where Rr
masked is the set of rays corresponding to the masked

pixels in the reference view (1HW ⊙Mr). Fig. 5 provides

an overview of our VDE-handling component.

Filtering Edge Islands. Sometimes it is not possible for

the bilateral solver, B, to propagate values from outside the

mask to certain areas on the inside of it. This occurs when-

ever there is an ªedge islandº in the masked region: i.e.,

a disconnected area in bilateral space (e.g., see [38]), such

that information from outside the mask will not be transmit-

ted inside. This typically leads to out-of-distribution values

in the output from B. Here, our goal is to remove such val-

ues from consideration. Our approach roughly corresponds

to imposing a Lambertian prior on object appearance, to

which we default when B is too uncertain; in such cases,

the target colours will likely end up close to those of the

reference view (though this is not guaranteed, due to the

view-dependent MLP). To implement this strategy, we de-

tect and filter out-of-distribution values associated to rays

in Rr
masked, when calculating Eq. 9, from every target view

t ̸= r; see our supplement for details.

4.3. Disoccluded Regions

While single-reference inpainting prevents problems in-

curred by view-inconsistent inpaintings, it is missing mul-

tiview information in the inpainted region. For example,

when inserting a duck into the scene, viewing the scene

from another perspective naturally unveils new details on

and around the duck, due to disocclusions (see Fig. 6). We

provide an approach to construct these missing details.

Given the inpainted posed reference view, (Ir, Πr), and

a target image, (It, Πt), we first identify the disoccluded

pixels in It within the mask Mt. Given the reference dis-

parity image, Dr, we unproject every pixel, pi ∈ Ir, into

the 3D scene, and then reproject it into It, with pixel loca-

tion pt,i. Every masked pixel in It that does not receive a

projected point (i.e., p̃ ∈ It s.t. p̃ /∈ {pt,i}i) is disoccluded;

i.e., there is no corresponding pixel in Ir to provide appear-

ance information. We therefore obtain a disocclusion mask,

Γt, associated to It. Next, we inpaint the NeRF render asso-

ciated to Πt, denoted Ît, masked by Γt: Î
(o)
t = Inp(Ît,Γt).

Finally, we render the disparity image, D̂t, and in-fill it as

Inpainted Reference View

Target V
iew

3D Scene 
(Reference Depth)

Masked Disparity Render

Masked Colour Render

Inpaint

In-fill

Bilateral

Guidance

Disocclusion 
Mask

Supervision

Figure 6: Overview of our disocclusion handling approach.

We first identify pixels in the target view, Πt, that are not

visible from the reference view, to build a disocclusion

mask, Γt. From Πt, we then inpaint a Γt-masked colour

render, followed by in-filling a disparity render, using bilat-

eral guidance to ensure consistency. Finally, these inpainted

disoccluded values are used for supervision.

well: D̂
(o)
t = B(Î

(o)
t , D̂t,Γt), where the bilateral solver, B,

is guided by the affinities from Î
(o)
t and confidences from

Γt. Similar to § 4.1 and § 4.2, we recompute Î
(o)
t and D̂

(o)
t

every Ndo iterations. For fitting, we use the set of rays from

Πt through disoccluded pixels in It, denoted Rdo,t (i.e.,

r ∈ Rdo,t is masked by Γt). Over a set of cameras, T ,

the following loss is then used:

Ldo = Et∼T,r∼Rdo,t

[
||Ĉ(r)− Ct(r)||

2 + ε(r)
]
, (10)

where ε(r) = ηdo[D̂(r)−Dt(r)]
2, ηdo > 0, and colour and

disparity are Ct(r) = Î
(o)
t [r] and Dt(r) = D̂

(o)
t [r].

5. Experiments

Datasets. Following SPIn-NeRF [42], we focus on

forward-facing scenes, as they are more challenging for the

inpainting task. For quantitative evaluations, we use the

SPIn-NeRF [42] dataset, which was designed specifically

for 3D inpainting. It contains 10 scenes, each with 60 train-

ing views (with the object to be removed), 40 test views

(without the object), and human-annotated object masks per

view. For qualitative examples, we adopt forward-facing

LLFF scenes [40, 72] and the SPIn-NeRF dataset [42]. We

use simple per-scene text prompts to generate inpainted ref-

erence views using Stable Diffusion Inpainting v2 [55]; see

our supplementary material for details.

Metrics. Given the ill-posed nature of the task, we fol-

low the 2D [61] and 3D [42] inpainting literature by eval-

uating the perceptual quality and realism of the inpainted

scenes. We conduct experiments based on two types of

metrics: full-reference (FR) and no-reference (NR). For FR,

we compare the inpainted renderings to ground-truth (GT)

captures of the scenes without unwanted objects, based on
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Table 1: Quantitative full-reference (FR) evaluation of 3D

inpainting techniques on the inpainted areas of held-out

views from the SPIn-NeRF dataset [42]. Columns show dis-

tance from known ground-truth images of the scene (with-

out the target object), based on a perceptual metric (LPIPS)

and feature-based statistical distance (FID). Our approach

with stable diffusion (SD) performs best by both metrics.

Method LPIPS↓ FID↓
NeRF + LaMa (2D) [61] 0.5369 174.61

Object NeRF [78] 0.6829 271.80

Lunmasked
rec (Masked NeRF) [41] 0.6030 294.69

Lunmasked
rec + DreamFusion [49] 0.5934 264.71

NeRF-In (multiple) [34] 0.5699 238.33

NeRF-In (single) [34] 0.4884 183.23

SPIn-NeRF-SD [42] 0.5701 186.48

SPIn-NeRF-LaMa [42] 0.4654 156.64

Ours-SD 0.4532 116.24

LPIPS [84] and Frechet Inception Distance (FID) [16]. For

both LPIPS and FID, we only compare the inside of the ob-

ject bounding boxes, matching SPIn-NeRF’s [42] setup. For

NR, we assess image quality, without using GT captures,

by measuring sharpness via the Laplacian variance [48] and

MUSIQ [25], which uses a learned model of visual quality;

see our supplementary material for details.

Baselines. We benchmark our approach against six 3D

inpainting models. (i) NeRF + LaMa (2D): a NeRF is fit to

the scene (including the target object), followed by render-

ing and inpainting via LaMa [61] from the test views. (ii)

Object-NeRF [78] directly removes masked points in 3D,

but does not leverage inpainters to clean up disoccluded re-

gions. (iii) Masked NeRF simply ignores the masked pixels

during fitting, relying on the NeRF model itself to inter-

polate the missing values. (iv) NeRF-In [34] uses 2D in-

painters as well, including on depth images, but relies on

a pixelwise error for fitting, despite multiview inconsisten-

cies. Two versions of (iv), using single and multiple in-

painted references, are evaluated. (v) SPIn-NeRF [42] uses

a perceptual loss to account for view inconsistencies. We

consider two versions with different 2D inpainters, namely

Stable Diffusion (SD) [55] and LaMa [61]. (vi) We also

consider a variant of Masked NeRF, with an additional loss

based on the recent DreamFusion [49, 63] model, which uti-

lizes the SD likelihood as a prior for generating textured 3D

models. For i, ii, iii, iv, and v we show the results reported

in [42]. See supplementary material for further details.

Quantitative Results. In Table 1, we see that our ap-

proach provides the best performance on both FR metrics.

The Object-NeRF and Masked-NeRF approaches, which

perform object removal without altering the newly revealed

areas, perform the worst. Combining Masked-NeRF with

Table 2: Quantitative no-reference (NR) evaluation of 3D

inpainting on videos rendered from the SPIn-NeRF dataset.

Our approach outperforms SPIn-NeRF (the second-highest

performing model according to the full-reference metrics).

Method Sharpness↑ MUSIQ↑
SPIn-NeRF-LaMa [42] 354.31 58.10

Ours-LaMa 394.55 62.00

Ours-SD 398.56 61.47

SPIn-NeRF-LaMa OursSample View & Mask

Figure 7: Qualitative comparison of novel view render-

ings of our method with SPIn-NeRF-Lama (the second-best

model quantitatively). We find that SPIn-NeRF still out-

puts blurry textures in the masked area (see first three rows),

while ours is always sharp. See our supplementary material

for additional comparisons with other baselines.

Input Views & Masks

Reference View Ours-SD

SPIn-NeRF-LaMa

Ours-SD

Ours-SD

Figure 8: Qualitative example of effects of ablation. Re-

moving the masked depth loss catastrophically damages the

geometric structure of the inpainted area (lower-centre in-

set). The upper-right image shows that ablating the disoc-

clusion loss results in a blurrier output near the edge of the

wall (see zoomed-in area), while the inset at the bottom-

right (the full model) has sharper novel structure.

DreamFusion performs slightly better. This indicates some

utility of the diffusion prior; however, while DreamFu-
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Input Views & Masks Reference View Ours-SDOurs-SD (w/o        and       ) 

Figure 9: Visualization of ablated view-dependent-effects

handling. Visual quality degrades in the ablated scenario

(without § 4.2 and Ldo from § 4.3), with rough, uneven

lighting across the masked area and an unrealistic jump in

brightness on the left mask edge. In contrast, the full model

(rightmost inset) smoothly interpolates the view-dependent

lighting of the novel view into the masked area.

Input Views & Masks Reference Views Outputs (Novel Views)

Input Views & Masks Reference Views Outputs (Novel Views)

Figure 10: Qualitative illustration of our results on two

scenes from the SPIn-NeRF dataset [42]. For each scene,

we use two different reference views to generate corre-

sponding inpainted scenes. For each inpainted scene, we

show two novel view renderings. Note the ability to insert

novel content into the 3D scene. Please see our supplemen-

tary material and website for additional visualizations.

sion can generate impressive 3D entities in isolation, it

does not produce sufficiently realistic outputs for inpainting

real scenes. SPIn-NeRF-SD obtains a similar poor LPIPS,

though with better FID. It is unable to cope with the greater

mismatches of the SD generations. NeRF-In outperforms

the aforementioned models. Still, the use of a pixelwise

loss leads to blurry outputs. Finally, our model outperforms

the second-best model (SPIn-NeRF-LaMa) considerably in

terms of FID, reducing it by ∼25%.

FR measures are limited by their use of a single GT tar-

get image. We therefore also examine NR performance,

demonstrating improvements over SPIn-NeRF, in terms of

both sharpness (by 11.2%) and MUSIQ (by 5.8%); see Ta-

ble 2. This confirms our qualitative observation (see Fig. 7)

that our results are considerably sharper and more realistic.

Ablations. In Table 3, we illustrate the effect of ablating

components of our algorithm. Using LaMa to obtain Ir led

Table 3: Quantitative evaluation of methodological abla-

tions via full-reference (FR) metrics. Removing the con-

tribution of VDEs via view-substitution, masked depth loss,

and disocclusion handling lead to reduced FR performance.

To demonstrate the potential of improving reference image

quality, we evaluate a model using a GT capture as Ir.

Method LPIPS↓ FID↓
Ours-LaMa 0.4634 133.27

Ours-SD (w/o § 4.2 and Ldo) 0.5279 145.60

Ours-SD (w/o Lmasked
depth ) 0.5211 181.20

Ours-SD (w/o Ldo) 0.4676 126.74

Ours-SD 0.4532 116.24

Ours (w/ GT reference view) 0.3889 104.10

to inferior performance, showing our model benefits from

better image inpainters. Further, each of the VDE (§ 4.2),

masked depth (Lmasked
depth from Eq. 4 in § 4.1), and disocclu-

sion (Ldo from Eq. 10 in § 4.3) handling improve quality.

We also include a ªgold standard scenarioº, where a real

photo is used instead of an inpainted one, loosely indicat-

ing the best possible score one can expect from the model;

this suggests there is room for improvement, simply by im-

proving inpainted reference views. Qualitatively, Fig. 8 il-

lustrates the results of ablating Lmasked
depth and Ldo. The for-

mer is harmful to geometric quality (and thus image struc-

ture) while the latter blurs outputs in disoccluded areas. An-

other core contribution is our ability to handle VDEs in non-

reference views; ablating our view-substitution-based tech-

nique degrades visual quality, as shown in Fig. 9, with un-

even and unrealistic brightnesses in novel views. Our sup-

plement contains additional visualizations.

Controllability. An additional major capability of our

method is the ability to insert novel content into the 3D

scene by providing a different inpainted single-image ref-

erence. We refer to this as controllability and showcase

examples in Fig. 1. While other methods can also insert

content by altering one view, such as using NeRF-In with

a single reference, ours (i) avoids visual quality degrada-

tion in views far from the reference and (ii) generates non-

reference VDEs as well. We demonstrate this in Fig. 10,

where we add novel content to each scene, such as the in-

door garden and wash basin (see supplemental for more ex-

amples). We remark that the expanding generative capacity

and creativity of 2D inpainting models, such as text-guided

diffusion models (e.g., [55, 50]), will render controllability

increasingly important in future work.

6. Conclusion

In this paper, we presented an approach to inpaint

NeRFs, via a single inpainted reference image. We used

a monocular depth estimator, aligning its output to the co-

8
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ordinate system of the inpainted NeRF to back-project the

inpainted material from the reference view into 3D space.

We further leveraged bilateral solvers to add VDEs to the

inpainted region, and used 2D inpainters to fill disoccluded

areas. Our work still has two main limitations: first, we

fall back to a diffuse prior in the case of masked edge is-

lands (i.e., when we cannot hallucinate VDEs). Second, ex-

act depth alignment remains difficult. Still, using multiple

evaluation metrics, we demonstrated the superiority of our

algorithm over prior 3D inpainting methods. We also illus-

trated the controllability advantage of our model, enabling

users to easily alter the generated scene through a single

guidance image.
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A. Summary

We provide additional details about the comparative

baselines, against which we benchmark, in Appendix B.

Further exposition about our disparity smoothing technique

(see § 4.1) and edge island filtering method (see § 4.2.3) is

given in Appendix C and Appendix D, respectively. Ad-

ditional visualizations are shown in Appendix E, includ-

ing methodological illustrations (§ E.1) and qualitative ex-

amples (§ E.2 and § E.3). Technical implementation de-

tails, such as hyper-parameter values, are discussed in Ap-

pendix F. Finally, further explanation about our choice of

evaluation metrics is given in Appendix G. Please also view

our supplementary website for additional visualizations, in-

cluding videos.

B. Baseline Details

B.1. Masked-NeRF + DreamFusion

For the Masked-NeRF + DreamFusion baseline, we use

the same per-scene text prompts we used to generate our

reference views, to guide the generation of the masked re-

gion using the score distillation sampling (SDS) [49] loss.

We found that gradually and uniformly decreasing the max-

imum noise steps, tmax, during fitting, until it equals the

minimum noise steps, tmin, at the last iteration, improves

quality. We suggest this is because, at first, higher noise

levels are effective in the generation of global scene struc-

ture, and later, lower noise-levels enable fixing details. Due

to the unavailability of DreamFusion’s code and their un-

derlying diffusion model, Imagen [57], we used stable-

dreamfusion [63], with Stable-Diffusion [55] as the under-

lying diffusion model.

B.2. NeRF-In

As in prior work [42], we used our own implementation

of NeRF-In [34], due to the unavailability of official code.

Besides the primary distinctions with our method, such as

the pixelwise loss, the remaining architecture (e.g., the use

of NGP [44]) is identical to our method. Note that this in-

duces minor implementation differences from the concur-

rent technical report of NeRF-In, such as the choice of pre-

trained 2D inpainting model.

Since NeRF-In considers the effect of varying numbers

of reference images, we considered two variants of NeRF-

In: using multiple reference images (i.e., inpainting all im-

ages, as in SPIn-NeRF [42] and using a single one. By de-

fault, we utilize the latter method, as it obtains better overall

performance (in both our experiments and those of NeRF-In

itself), but report the performance of both models in Table 1.

B.3. Object-NeRF

Following the Object-NeRF [78] model, we can remove

objects by simply ignoring the contribution of masked 3D

points in the volume rendering process (equivalent to setting

σi = 0 in masked regions). This is possible here due to the

assumed availability of a 3D mask. Note that we are only

utilizing this particular approach to object removal, not the

entire Object-NeRF algorithm (i.e., the construction of the

NeRF itself is identical to our method).

C. Disparity Smoothing Details

After performing the initial depth alignment (as dis-

cussed in § 4.1), we further reduce the misalignments

around the edges of the reference mask, Mr, via smoothing

the aligned reference disparity, Dr. More specifically, to

improve the visual continuity of the reference-view bound-

ary between the aligned masked disparity, Dr ⊙ Mr, and

the unmasked rendered NeRF disparity, D̂r ⊙ (1−Mr), we

smooth Dr to get the edge-smoothed disparity, Dsmooth
r :

Dsmooth
r = Dr +Dcorrection, (11)

where Dcorrection is the smoothed disparity correction ob-

tained by minimizing the following objective:

∥∥(D̂r −Dsmooth
r )⊙ (1−Mr)

∥∥2
2

+γsmooth

∑

p∈Ir

∑

p′∈N (p)

(
Dcorrection(p)−Dcorrection(p′)

)2
,

(12)

where for a pixel, p, N (p) is the set of four neighbouring

pixels, and γsmooth is the weight of the smoothness loss. The

first term in Eq. 12 fits the unmasked pixels of Dcorrection to

the difference of the rendered disparity, D̂r, and the aligned

disparity, Dr. The second term is the smoothness penalty,

to smoothly propagate the values of Dcorrection from outside

the mask to inside.

D. Edge Island Filtering Details

When propagating appearance information into the

masked area, in order to construct view-dependent effects

for supervision in non-reference views, recall that the bilat-

eral solver is sometimes unable to provide sensible colour

values in some areas of the masked region, due to the pres-

ence of ªedge islandsº (see § 4.2.3). Such areas are isolated

patches in bilateral space, for which the bilateral solver can-

not effectively produce colour values (see Fig. 11 for in-

stances of this). In this section, we provide additional de-

tails on our filtering algorithm for removing these invalid

values, so that they are not used for supervision.

First, we dilate the mask, Mr, with kernel size 5 to get

the dilated mask, M dilated
r . Then, for each target view, t,

we find the maximum absolute value of the residual inside

M dilated
r and outside Mr:

resmax
t = max

(
abs(rest)⊙

(
M dilated

r ∩ (1−Mr)
))

, (13)
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Input Views

Input Masks

Reference View,

Edge Island Mask,

Figure 11: Examples of our ªedge islandº detection method,

designed to filter out erroneous outputs from the bilateral

filter (detailed in Appendix D). Left column: input views

and masks for the scene. Middle column: view-substituted

renders after bilateral inpainting (see also § 4.2), which has

produced poor quality colours in the edge island formed

by the washtub. Right column: (top) the reference view

and (bottom) the detected mask, used to filter out rays that

would potentially damage the output.

Figure 12: The additional matrices used for tighter align-

ment around the edges when aligning disparities (see § 4.1).

In our experiments, scale and offset were insufficient to

have the depths completely aligned around the boundaries

of the mask. These two matrices allow the predicted depth

to be tilted along the x and y axes.

where abs(·) is the element-wise absolute value. We denote

the mask for the pixels in rest ⊙ Mr with absolute values

higher than resmax
t × cei as Mei

r,t, where cei ≥ 1 is the filter-

ing threshold. The mask of the edge island is then obtained

as the union of the mask of all of the out-of-distribution val-

ues among all of the target views:

M ei
r =

⋃

t

Mei
r,t. (14)

Fig. 11 shows an example of the effects of an edge island

inside the masked region (the orange pan) on the target

colours of two example target views, Îr,t1 and Îr,t2 . As

shown in the figure, the bilateral solver has failed to predict

correct view-dependent colours for the pan, resulting in ex-

treme behaviour inside the pan. Our proposed edge island

filtering successfully detects and removes the outlier values

via the edge island mask, M ei
r .

3IBRNet images in Fig. 13,14 by Wang et al. available in IBRNet [72]

E. Additional Visualizations

E.1. Methodological Illustrations

Depth Alignment Tilt Matrices. In Fig. 12, we vi-

sualize the matrices utilized for tighter depth alignment

(see § 4.1). These matrices allow the optimization to tilt

the depths, in addition to scaling and shifting them.

Overview. We provide an expanded methodological il-

lustration in Fig. 13, covering our approach to providing

geometric supervision in the masked region (§ 4.1) and han-

dling the construction of view-dependent effects in non-

reference views (§ 4.2); see also Figs. 3, 4, and 5.

View-Substituted Images. We also provide some exam-

ples of view-substituted images (see § 4.2.1) in Fig. 14. No-

tice that the view-substituted images have identical camera

viewpoint (and thus image structure) as the reference image,

but different colours, corresponding to the view-dependent

visual differences across the non-reference images.

E.2. Additional Ablation Examples

Masked Depth and Disocclusion. We show an addi-

tional experimental ablation example in Fig. 15, removing

masked depth supervision and disocclusion handling (as in

Fig. 8). Removing the former causes significantly damaged

geometry (and thus considerable visual artifacts as well),

while ablating the latter increases blurriness in the disoc-

cluded region (i.e., around newly unveiled details near the

occlusion boundary).

Disparity Smoothing. In Fig. 16, we consider the ef-

fect of ablating our disparity smoothing approach (see § 4.1

and Appendix C), utilized for obtaining depth in the masked

area and matching it to the surrounding scene geometry.

Particularly close to the mask boundary, we see that the

unsmoothed geometry has a much more jarring transition

between the masked and unmasked areas.

E.3. Qualitative Results

Comparisons. Additional comparisons to SPIn-NeRF,

NeRF-In, and DreamFusion are shown for novel view syn-

thesis in Fig. 17. Notice that utilizing the DreamFusion [49]

loss along with the Masked-NeRF (see § 5 and Appendix B)

can result in unrealistic colours (first row) and sometimes

a failure to converge (second row), though the quality im-

proves over Masked-NeRF alone (see Table 1). NeRF-

In [34] is blurry in masked areas, as the textures do not

match well in a pixelwise manner. SPIn-NeRF [42] reduces

this blurriness considerably, but still incurs some level of

blur, especially in the presence of more complex textures

(e.g., second row). In contrast, our method provides sharp

details for all cases.

under a CC BY 3.0 License.
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Figure 13: Schematic overview of our NeRF fitting algorithm for 3D inpainting. The inputs to the method are a single

inpainted reference view, Ir, and a set of posed images with associated inpainting masks (leftmost column). We begin the

fitting process with standard NeRF supervision on the unmasked areas of the images, after which we can render a disparity

map, D̂r, with reasonable quality outside the mask (lower-left insets). We then use a monocular depth estimator to obtain the

predicted disparity, D̃r, and apply a novel alignment procedure (§ 4.1) to obtain an aligned disparity map, Dsmoothr , which

can be used to supervise the depth under the mask via loss Lmasked
depth (upper middle inset). Finally, to obtain view-dependent

effects in unseen views (§ 4.2), we utilize our new view-substitution technique (§ 4.2.1) to render an image, Ir,t, via the

reference camera, but with the colours of a non-reference (target) view, It (centre-right inset). The view-substituted image,

Ir,t, is subtracted from the reference view, Ir, to obtain a residual image, ∆t = Ir−Ir,t; we then apply the bilateral solver, B,

to refine ∆t, using the reference mask, Mr, to construct a confidence map (low inside the mask and high outside it), guided

by the bilateral affinities of Ir (upper-right insets; see § 4.2.2). This has the effect of ªdiffusingº the view-dependent effects

of the non-reference view from outside the mask into the inside of the masked area, obtaining an ªinpaintedº residual, rest.

Subtracting this from Ir gives our desired colours, Îr,t = Ir − rest, which can be used to supervise the colours under the

mask (lower-right insets). The resulting combined losses thus supervise the NeRF from non-reference target viewpoints both

outside the mask (Lunmasked
rec ) and inside the mask (Lmasked

depth and Lmasked
rec ). See § 4 for details.3

Controllability. We also provide more examples of con-

trollable inpainting in Fig. 18. Notice that we can easily

control various aspects of the inpainted scene, such as the

presence or absence of roots in the tree (upper rows) or the

length of the stone bench (lower rows), by simply changing

the inpainting of the single reference image. For additional

examples of controllable insertion, see also Fig. 10.

F. Implementation Details

In our experiments, both Ndepth and Nbilateral are set to

2000. We train each scene for 10000 iterations. The dis-

occusion handling is run every Ndo = 3000 iterations. The

weights γmasked
depth , γmasked

rec , γdo, ηdo, and γsmooth are set to 4, 2,

1, 0.25, and 1000, respectively, and cei is set to 2. We fol-

low [42] and use a combination of [44] and [11] for faster

convergence, and dilate all of the masks for 5 iterations with

a 5× 5 kernel to make sure that the masks cover the whole

object, and to mask some of the shadows of the unwanted

object. All of the images are downsized four times to re-

duce memory usage and match the experiments of SPIn-

NeRF [42]. We also use the distortion loss proposed by [3]

for reducing the floater artifacts. We set the weight of the

distortion loss to 0.01. For generating multiple inpainted

source views, we leverage the diversity of denoising dif-

fusion models, and use stable-diffusion inpainting v2 [55].

For inpainting the residuals with the bilateral solver, we set

the brightness and colour bandwidths to 4, while the spa-

tial bandwidth was set to 128. The strength smoothness

and the number of PCG iterations are set to 128 and 25,

respectively. For disocclusion handling, we use LaMa [61]

as the 2D inpainter and use three target images for T (cor-

responding to the cameras furthest leftward, rightward, and

upward). A small morphological dilation (four iterations

with a 3 × 3 kernel) is applied to remove noise from the

disocclusion masks. The bilateral filter in the disocclusion
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Input Views & Masks

Reference View

View-Substituted Absolute Residual

View-Substituted Absolute Residual View-Substituted Absolute Residual

View-Substituted Absolute Residual

Figure 14: Overview of the outputs of our view-substitution method. The input views and masks (top-left) with their corre-

sponding camera parameters, in addition to a single reference view (bottom-left), are the inputs to our multiview inpainting

approach. On the right hand side, we show the view-substituted renderings, {Ir,t1 , · · · , Ir,t4}, for four different target views,

{t1, · · · , t4}. For each view-substituted image, Ir,t, we also provide the absolute value of the residual, |Ir− Ir,t|, to illustrate

the view-dependent effects provided by our approach. Notice that all of the view-substituted images are looking at the scene

from the reference camera, but the rendered colours are from different target cameras.

Input Views

Input Masks Ours-SDOurs-SD

Ours-SDReference View

Figure 15: Qualitative example of effects of ablation (see

also Fig. 8). Notice the degradation incurred by not us-

ing the masked depth supervision (lower-middle inset) and

the slightly blurrier outputs in the disoccluded region when

not using Ldo (upper-right inset; look closely at the zoomed

area, particularly at the background close to the edge of the

inserted duck).

Input Views & Masks Reference View w/o Disparity Smoothing w/ Disparity Smoothing

Figure 16: Effect of our disparity smoothing step (see § 4.1

and Appendix C) on the rendered disparities. As illustrated

above, the edges of the masked region (around the box) are

more blended in with the surrounding after adding the dis-

parity smoothing component.

case uses a spatial bandwidth of only 8. Our implemen-

tation is mainly in PyTorch [46]. For generating the in-

paintings for Ours-SD, we used stable diffusion inpainting

v2 [55], and a simple per-scene text prompt describing the

inpainted scene. Below are the text prompts used for SPIn-

NeRF scenes:

• A stone bench, a bush in the background, the bench is

grey with a rectangular shape in perspective, photore-

alistic 8k

• A wooden tree trunk on dirt, photorealistic 8k

• A red fence, photorealistic 8k

• Stone stairs, photorealistic 8k

• A circular lid made of rusty iron on a grass ground,

photorealistic 8k

• A corner of a brick wall, photorealistic 8k

• A wooden bench in front of a white fence, photoreal-

istic 8k

• An image of nature with grass, bushes in the back-

ground, photorealistic 8k

• A desk in front of a brick wall with an iron pipe, pho-

torealistic 8k

• A brick wall, photorealistic 8k
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NeRF-In SPIn-NeRF-LaMa OursSample View & Mask DreamFusion

Figure 17: Additional qualitative comparisons to baselines with synthesized novel views. The Masked-NeRF+DreamFusion

model (second column) does improve quantitatively (see Table 1) over using Masked-NeRF alone or simply removing the

object in 3D without inpainting (the ªObject-NeRFº baseline), but it does not output sufficiently realistic details to outperform

our method: see the oversaturated colours on the fence in first row and the unnatural output in the second row. NeRF-In [34]

(third column), here using the ªmultipleº variant with LaMa [61], is quite blurry, due to disagreements between inpainting

details among the input images. SPIn-NeRF [42] (fourth row) improves on this via the use of a perceptual loss [84], but

still generates blurry details when significant disagreement among inpaintings are present (semantic differences, as such the

presence or absence of the pipe in the second row, and complex textures (e.g., the grassy dirt in row one or the variously

coloured bricks in row two) can exacerbate this problem). In contrast, our method is consistently sharp; see also Fig. 7.

Input Views & Masks Reference Views Outputs (Novel Views)

Input Views & Masks Reference Views Outputs (Novel Views)

Figure 18: Qualitative illustration of our results on addi-

tional scenes from the SPIn-NeRF dataset [42]; see also

Fig. 10. For each scene, we use two different reference

views to generate corresponding inpainted scenes. For each

inpainted scene, we show two novel view renderings. Note

the ability to insert novel content into the 3D scene or mod-

ify existing scene structure, such as adding the tree roots

and controlling the length of the bench. Please see our sup-

plementary website for additional visualizations.

Note that we did not engineer the prompts to improve the

results. We typically selected the first generated inpainting.

However, as seen in Fig. 2, sometimes, the stable diffusion

inpainter adds objects in the scene; in those cases, we regen-

erated the output to get an inpainting without any additional

object for a fair comparison to the baselines. For quantita-

tive experiments, we always select the 30-th image among

the 60 training views in SPIn-NeRF’s dataset [42] as the

reference view.

G. Metrics: Additional Details

The ill-posed nature of inpainting means that evaluation

is non-trivial: ªground-truthº images are merely one of an

infinite number of possible solutions, any plausible member

of which should be considered valid. We therefore focus on

evaluating perceptual quality and realism, rather than recon-

struction, via two types of metrics: full-reference (FR) and

no-reference (NR).

In the FR case, we utilize the ground-truth (GT) images

of the scene without the object for comparison with LPIPS

[84] and Frechet Inception Distance (FID) [16]. LPIPS, a

perceptual distance, is far more robust to changes that main-

tain textural consistency than pixelwise distances. For FID,

we compare the distributions of encoded statistics between

the inpainted and GT images, which confers high robustness

to mismatches in local details, focusing instead on agree-

ment in high-level visual appearance. Both of these met-
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rics were used previously for 3D inpainting evaluation [42].

For both LPIPS and FID, we only perform the comparison

inside the bounding boxes of the objects. We expand the

bounding boxes by 10% to match SPIn-NeRF’s [42] setup.

However, FR metrics are not completely robust to the

choice of reference image, preferring solutions more simi-

lar to the GT over others that are equally perceptually real-

istic. This is exacerbated if an inpainting model inserts new

semantic content into a scene, as recent diffusion-based ap-

proaches are apt to do (e.g., [55, 50]), whether it is percep-

tually realistic or not. Thus, we consider two NR metrics,

where image quality is assessed in a stand-alone manner.

The first measure is simply the variance of the image Lapla-

cian, a classical measure of sharpness (e.g., [48]), which has

been previously used to evaluate 2D generative image mod-

els [66, 17]. The second is MUSIQ [25, 7], a transformer-

based model for NR image quality assessment, meant to re-

produce human perceptual judgments.

Note that our metrics in the FR case are computed

against bounding boxes (containing the object mask) in

held-out views, while our NR sharpness metrics are com-

puted across 120 renders from a camera in a spiralling pat-

tern (in video form). In this way, we assess inpainting qual-

ity in its full 3D context; i.e., we ensure that the inpainting

quality generalizes to novel views.
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