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Abstract

Mapping and localization using surface features is prone to failure due to environment changes such as inclement

weather. Recently, Localizing Ground Penetrating Radar (LGPR) has been proposed as an alternative means of

localizing using underground features that are stable over time and less affected by surface conditions. However, due

to the lack of commercially available LGPR sensors, the wider research community has been largely unable to replicate

this work or build new and innovative solutions. We present GROUNDED, an open dataset of LGPR scans collected in

a variety of environments and weather conditions. By labeling these data with ground truth localization from an RTK-

GPS / Inertial Navigation System, and carefully calibrating and time-synchronizing the radar scans with ground truth

positions, camera imagery, and Lidar data, we enable researchers to build novel localization solutions that are resilient

to changing surface conditions. We include 108 individual runs totalling 450 km of driving with LGPR, GPS, Odometry,

Camera, and Lidar measurements. We also present two new evaluation benchmarks for 1) Localizing in Weather and 2)

Multi-lane Localization, to enable comparisons of future work supported by the dataset. Additionally, we present a first

application of the new dataset in the form of LGPRNet: an inception-based CNN architecture for learning localization

that is resilient to changing weather conditions. The dataset can be accessed at http://lgprdata.com.
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Introduction

The ability to localize in the environment is critical to
enable the widespread deployment of autonomous vehicles.
While the Global Positioning System (GPS) is often used to
obtain approximate global localization, it lacks the accuracy
necessary to meet the stringent requirements of autonomous
driving Wing et al. (2005). For this reason, most fielded
autonomous vehicle solutions currently localize on HD
maps with either lidar sensors Levinson et al. (2007);
Levinson and Thrun (2010); Wolcott and Eustice (2015),
cameras Mur-Artal et al. (2015), or both Wolcott and
Eustice (2014). Localization with these sensors can provide
accuracy in the range needed for autonomous operation.
However, sensors that rely heavily on surface features in
the environment have an inherent failure mode should the
environment change between the mapping and localization
phases. Some approaches aim to filter out dynamic objects
during mapping Bescos et al. (2018). Others seek to

identify and map only stable features or landmarks in the
environment Dymczyk et al. (2016); Bürki et al. (2019).
Robustly dealing with inclement weather such as snow
is particularly challenging, as snowfall can dramatically
alter the surface appearance. Solving this problem remains
one of the open challenges to enable human-level (or
above) performance of autonomous vehicles in diverse
environments.

Recently, Localizing Ground Penetrating Radar
(LGPR) Cornick et al. (2016) has been proposed to
address the localization task in such environments. By
mapping and localizing using features beneath the ground,

1Massachusetts Institute of Technology, US
2University of Toronto, CA

Corresponding author:
Teddy Ort, Massachusetts Institute of Technology, US

Email: teddy@mit.edu

Prepared using sagej.cls [Version: 2017/01/17 v1.20]

http://lgprdata.com


2 Journal Title XX(X)

Figure 1. The GROUNDED dataset includes four data streams
for each run. 1) Lidar scans from a roof-mounted Velodyne
HDL-64, 2) Camera images from a front-facing Point Grey
Grasshopper camera, 3) Base station-corrected RTK-GPS for
groundtruth, and 4) LGPR data stream from the rear-mounted
radar unit.

LGPR can avoid the instability of surface-based maps.
LGPR was used as the sole localization sensor in Ort et al.
(2020) to navigate an automated vehicle in clear weather,
rain, and snow conditions. However, the sensor demonstrated
in that work is not commercially available. Typical Ground
Penetrating Radar (GPR) sensors utilize frequencies in the
0.5GHz to 2.5GHz range Benedetto et al. (2017) to obtain
a high-resolution image of objects close to the surface.
However, a lower frequency of 100MHz to 400MHz is
ideal for localization because the greater penetration depth
enables mapping of deeper, more stable features Cornick
et al. (2016). Several companies have recently announced
plans to commercialize LGPR technology Ryan (2017);
Shaw (2020). Currently, however, there are still no options
to purchase LGPR sensors suitable for localization. The lack
of publicly available sensors or datasets has left the technical
community in a holding pattern.

In this work, we aim to address the lack of access to
LGPR systems and to enable algorithmic development for
localization of autonomous vehicles in a wide range of
weather conditions and illumination. We describe and release
an open dataset of LGPR frames collected using one of
the prototype sensors described in Cornick et al. (2016).
We also propose two challenges aimed at accelerating the
development of solutions for mapping and localization under
challenging driving conditions such as difficult illumination,

heavy rain, and snow. We believe the dataset will enable
the research community to replicate and improve upon the
current state-of-the-art, and to tackle new open problems for
autonomous driving in difficult weather. For example, Ort
et al. (2020) found a degradation in localization performance
when localizing in rain or snow, perhaps due to the
unmodeled changes to the moisture content of the soil.
Furthermore, both Cornick et al. (2016) and Ort et al. (2020)
conducted both mapping and localization in a single lane.
Since practical autonomous vehicles will need to change
lanes, it is an important area of research to stitch together
multiple lanes to form a coherent map.

The dataset consists of 108 runs amounting to a total of
450 km and 12 hours of driving. For each route, there is data
associated with clear, rainy, and snowy weather (see Fig. 2).
The data includes groundtruth GPS location, odometry, and
scans from the LGPR sensor, the camera, and the lidar
system on the vehicle. Because the LGPR sensor has a data
collection footprint equal to its width, which is smaller than
the width of a road, a single path of the LGPR does not
provide a complete map of the ground features for that road.
We address this limitation by providing multiple paths for
each segment, with the vehicle driving left, center, and right
on the road (see Fig. 3), along with a challenge to align and
stitch different paths into a complete map.

In summary, this paper contributes the following:

• The first publicly available dataset of Ground
Penetrating Radar data for localization and mapping
collected in a variety of weather conditions, and
multiple adjacent lanes;

• Two challenge benchmarks: 1) Localization in
Weather and 2) Multi-lane Localization to compare
LGPR research;

• Additional lidar and camera data streams to enable
comparison with existing visual and lidar navigation
approaches in driving.

The remainder of this paper is organized as follows:
In the next section we review related work with LGPR
sensors and autonomous driving datasets. In Sec. Benchmark
Challenges we present the challenge benchmarks. Next,
in Sec. Dataset we describe the dataset organization and
software development kit. Then, in Sec. Data Collection
Platform we describe the research platform, sensor suite,
calibration, and time synchronization of the sensor streams.
Finally, in Sec. Conclusion we conclude with some final
thoughts regarding promising directions for future research.
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Related Work

Model-based Localization: Over the last two decades, the
robotics community extensively considered the problem of
localization and mapping Cadena et al. (2016) involving
a diverse set of sensors, most prominently cameras Lowry
et al. (2016) and lidars Levinson et al. (2007); Levinson and
Thrun (2010); Wolcott and Eustice (2015). Particularly for
autonomous driving, a considerable amount of work focused
on dealing with challenging and changing appearance
conditions Bürki et al. (2019) such as weather Doan et al.
(2019) or occlusions Bescos et al. (2018); Fehr et al. (2017).
To improve robustness, radar has also been considered
as a localization modality for autonomous driving Burnett
et al. (2021); Rapp et al. (2015); Werber et al. (2016,
2019). Even with this additional modality, robust localization
remains challenging due to phenomena such as occlusions.
The goal of this dataset is to overcome or completely
avoid some of these challenges. It enables wider research
on a complementary localization modality which does not
suffer from occlusion by dynamic objects and changes in
appearance conditions.

Learning-based Localization Learning-based localiza-
tion methods such as Kendall et al. (2015); Liu et al. (2020)
aim to learn a model for localizing a robot on a prior dataset
of surface images. Similarly, our proposed learning-based
approach, LGPRNet extends these to underground features.
However, unlike surface features, which can be viewed
from many different poses, underground radar features are
visible only from the region immediately above them, which
substantially affects the localization problem.

Ground Penetrating Radars: Only a few works
have considered the use of ground penetrating radars in
robotics, such as for landmine detection Dawson-Howe
and Williams (1998) or for autonomous surveys Williams
et al. (2012). Using GPRs for localization has so far
been considered only in Cornick et al. (2016); Ort et al.
(2020). Consequently, most GPR datasets are targeted at
very different application domains, e.g., for research on
soil structure characterization Romero-Ruiz et al. (2018)
or meteorology Kubota et al. (2009). Recently, Baikovitz
et al. (2021) learned relative GPR models to correct for
odometry drift using a factor graph. However, since the GPR
sensor was single-channel, it wasn’t suitable for localization
to a prior map. There is currently no dataset allowing
for widespread localization research with GPRs. The high
cost of GPRs and mere prototype availability of GPRs
specifically designed for localization makes research in this
field completely impossible for many groups. By making

their data publicly available, the authors aim to overcome
this limitation, simplifying research on radiogeological
navigation.

Datasets: Because of the high cost of a retrofitted
autonomous vehicle and to compare results more equally,
a lot of Autonomous Driving research is already driven
by benchmark datasets. In that context, the KITTI Geiger
et al. (2013) dataset is one of the earliest and most
popular in autonomous driving research. In recent years,
numerous institutions made the data from their research
vehicles publicly available Cordts et al. (2016); Huang et al.
(2018); Maddern et al. (2017); Pitropov et al. (2020); Sun
et al. (2020) some of which also involve radar data Barnes
et al. (2020); Caesar et al. (2020). A dataset specifically
focusing on radar perception is presented in Meyer and
Kuschk (2019). More recently, several datasets covering
novel sensing modalities have been made publicly available,
focusing on acoustic detection Schulz et al. (2021) and
dynamic vision sensors (DVS) Binas et al. (2017); Zhu
et al. (2018). In the same spirit, our work contributes ground
penetrating radars as a new sensing modality to dataset-
driven perception research.

Benchmark Challenges

Prior localization results with LGPR have looked promising,
yet there are two important limitations that must be overcome
before LGPR sensors can be practically useful. The first
requirement is to devise algorithms that can localize even
when the prior map was recorded in different weather
conditions. This can be challenging because LGPR data
can be affected by the moisture content and temperature
of the underground soil, which can vary with surface
weather conditions. In Ort et al. (2020) a degradation in
localization performance in rain and snow was measured,
but their algorithm did not explicitly account for weather
changes. The second requirement is to build maps that can
localize a vehicle while it is changing between multiple
lanes. Since the LGPR sensor only records data directly
beneath it, and the sensor only spans the width of the
vehicle, prior work Cornick et al. (2016); Ort et al. (2020)
only used maps consisting of a single lane. Since practical
autonomous vehicles will need the ability to maintain a
seamless localization as they traverse multiple lanes, it will
be necessary to devise mapping and localization algorithms
that can stitch together data from multiple passes in different
lanes to obtain a cohesive road map. To ensure solutions
to these limitations can be compared on an equal footing,
we propose the following two challenge benchmarks. Our
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Year Dataset Location Weather Camera Lidar Radar Other
2013 KITTI Geiger et al. (2013) Karlsruhe dry ✓ ✓ -
2016 Cityscapes Cordts et al. (2016) 50 cities dry ✓ - -

2017 DDD17 Binas et al. (2017)
Switzerland
& Germany dry, rain ✓ - - DVS

2017
Oxford
Maddern et al. (2017); Barnes
et al. (2020)

Oxford dry, rain, snow ✓ ✓ ✓

2018 ApolloScape Huang et al. (2018) 4 x China dry, rain, snow ✓ - -
2018 MVSEC Zhu et al. (2018) Philadelphia - ✓ ✓ - DVS
2019 Astyx Meyer and Kuschk (2019) - - ✓ ✓ ✓

2020 CADC Pitropov et al. (2020) Waterloo dry, snow ✓ ✓ -
2020 nuScenes Caesar et al. (2020) Boston, Singapore dry, rain ✓ ✓ ✓

2020 Waymo Sun et al. (2020)

San Francisco,
Phoenix, Detroit,

LA, Seattle,
Mountain View

dry, rain, snow ✓ ✓ -

2021 Delft Schulz et al. (2021) Delft - ✓ - -
Mic.
array

2021 Ours Massachusetts dry, snow, rain ✓ ✓ LGPR
Table 1. Overview of exteroceptive sensing modalities in autonomous vehicle navigation research datasets.

dataset specifically includes data to address these challenges,
including data collected in a variety of weather conditions
and in multiple lanes, as shown in Table 3.

Localization in Weather Challenge

Mapping and Localization Runs In the provided dataset,
every run was collected as a pair to enable mapping and
localization using the same environmental conditions. For
example, run 0001 and run 0002 were both collected driving
the same route, in an urban environment, in clear weather
and in the right lane. All of this information can be found
in the runs.csv file, as described in Sec. Run Level Data.
However, for the Localization in Weather Challenge, we
aim to evaluate localization using maps that were created
in different weather to demonstrate weather resilience.
Therefore, we could instead evaluate localization using
run 0037 or run 0038, which were both collected along the
same route, but in snowy weather, while still using run 0001

or run 0002 to build the map. In short, each run in the dataset
includes a weather condition label [clear, rain, snow]. For
this challenge, the mapping and localization runs should be
along the same geographical route, but in different weather
conditions.

In the event learning-based algorithms are utilized for
mapping, we would like to clarify here that it is acceptable
to include runs which were collected in inclement weather
in the training phase, as long as they were collected at a
different location. This mirrors the real-world constraints
where one could envision training an algorithm to localize

to single weather maps in all weather by including a small
sample of varying weather in the training phase. Finally,
while other onboard sensors (e.g. odometry, camera, or
lidar) may be used to enhance the localization estimate, the
estimate at each time ti may only use measurements taken at
a prior time tj such that j ≤ i.

Figure 2. Left: Camera images from three different runs of the
same route (route 04) capturing LGPR data in the same
location in clear weather, snow, and rain to support the
Localization in Weather Challenge. Right: Trajectory of route 04
overlaid on a map. Other runs capture a variety of environments
including rural (shown here), urban, and highway.
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Localization in Weather Metric The metric used for
localization in weather is an Absolute Trajectory Evaluation.
Since the LGPR data is labeled with ground truth RTK-
GPS data, we can directly evaluate the trajectory error rather
than implementing a relative metric, as is often needed with
SLAM or VIO solutions Zhang and Scaramuzza (2018).
Additionally, we limit the benchmark to the two translation
degrees of freedom and single rotation (yaw) on the surface
of the ground, as these are the critical values necessary for
autonomous driving. Thus, the first two metrics are the Root
Mean Square Error (RMSE) of the translation and orientation
of the vehicle trmse, θrmse evaluated over the entire run.
Next, because for driving purposes, the lateral translation
error (with respect to the lane) is often far more important
than the longitudinal, we further decompose the error into its
lateral and longitudinal components to obtain two additional
error metrics: tlat, tlong. While all four of these error metrics
should be reported, for the purpose of providing an overall
score we propose a weighting:

s = tlat + 0.1tlong + 10θrmse (1)

Intuitively, this assigns equal cost to 10 cm of error in the
lateral lane direction, 1m of error in the longitudinal lane
direction, and 0.57° of orientation error which have similar
real-world importance. As a first step toward addressing
this challenge, see Sec. LGPRNet: Learning to Localize in
Weather, where we propose a learning-based method for
mitigating the effect of changing weather conditions on
localization accuracy and evaluate it using this benchmark.

Multi-lane Localization Challenge

Mapping and Localization Runs In the provided dataset,
each run is labeled with a lane attribute in [Left, Center,

Right, Changing] as shown in Fig. 3. These lanes are
overlapping since the center lane is not a separate lane,
but rather the sensor centerline is passing over the lane
divider and including partial data from each of the left and
right lanes. The purpose of these runs is specifically to
support building cohesive maps that can track a vehicle even
while it is changing lanes, or only partially overlapping a
lane. For this challenge, multiple runs where the lane is in
[Left, Center, Right] in the same route should be used for
map creation. In runs where the lane is marked Changing

, the vehicle was driven along the route while randomly
choosing any of the [Left, Center, Right] lane positions and
changing between them. Those runs should only be used
for localization evaluation and not included in mapping or
training data.

Multi-lane Localization Metric The metric used for the
Multi-lane Localization benchmark is similar to that
described for the previous benchmark. One important
difference is that here we explicitly do not follow a single
lane. Therefore, lateral and longitudinal lane errors are not
needed and only the absolute trajectory errors trmse, θrmse

are necessary. The overall score is then calculated as:

s = trmse + 10θrmse (2)

Figure 3. The Multi-lane Localization Challenge provides
LGPR frames collected in four lane positions: 1) Left, 2) Right,
and 3) Center 4) Changing. These runs can be used to create a
consistent map capable of localizing the vehicle continuously
even while switching lanes.

Dataset

The dataset is available for download at http://

lgprdata.com. The data is stored hierarchically, as shown
in Fig. 4.

Run Level Data

At the highest level are runs. Each run is a single data
collection instance often taking the form of a loop. To avoid
potential issues with overlapping sensor data, the start and
end points of the loop always have a small gap of ≈10m. For
each run, we provide run-level information in a file called
runs.csv. This file contains columns as shown in Table 2.
Each row in runs.csv has a unique run id which corresponds
to a directory such as run 0001 in the runs directory (see
Fig. 4). Note that the route id corresponds to a unique route
traversal but duplicates do exist because the same route
was driven in multiple runs. For example, run 0001 and
run 0002 represent two unique runs, but have the same
route id because they traversed the same physical route.
Furthermore, a single route can be traversed in any of the
lanes, or in either direction. One final caveat to bear in mind
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Figure 4. The dataset is organized in directories for each run.
Run metadata such as the lane and weather conditions is
provided in the runs.csv file and referenced by the
corresponding {run id}. Similarly, for each sensor, frame
metadata is provided in a frames.csv file referencing individual
frames by their {frame id}.

is that the direction of traversal rotates the semantic meaning
of the lane column. Thus, two runs with the same route id but
different direction values would imply traversing the same
lane in opposite directions if the lane value in one was equal
to right while in the other was left. In general, the purpose of
grouping runs by route, lane, and direction, is to provide data
for the Multi-lane Localization Challenge (Sec. Multi-lane
Localization Challenge). For the simple case of mapping and
localizing on the same trajectory (as in the prior work), one
can simply use runs with identical route, lane, and direction.

The dataset contains runs in a variety of lanes, and
environmental and weather conditions to support the
benchmark challenges proposed earlier. Table 3 shows the
splits in the data for each of the relevant data conditions.

Column Data Type Description
run id Integer A unique value for each run in

the dataset
date Date The date when the run was

recorded
road type String One of {urban, rural, high-

way}
route id Integer A unique value for each route
weather String One of {clear, rain, snow}
direction Integer {−1, 1} =

{clockwise, anticlockwise}
lane String One of {left, center, right,

changing}
length Float The total length (km) of the

run
duration Float The total duration (s) of the run
sensors List A list of comma separated

sensor names
Table 2. The file runs.csv contains metadata for every run in
the dataset organized into the columns shown.

Sensor Level Data

Within each run directory, there are several directories, one
for each element in the sensors field in the corresponding
row of runs.csv. Currently, every run includes at a minimum
[lgpr, gps, odom]. Many runs additionally include [camera,

lidar]. Next, we briefly describe the data formats of each of
these sensor streams; for additional details, please see the
dataset documentation.

lgpr The LGPR sensor frames are arrays with shape
(11, 369) corresponding to the 11 radar channels (11 Tx and
Rx pairs for the 12 radar elements in the array) and the 369
depth bins. Each value in the array is an int8 ranging from
[-128, 127]. The lgpr directory contains a file frames.csv

which includes a table containing the frame id for each
LGPR frame in the run, along with a timestamp providing
the synchronized time (see Sec. Time Synchronization) for
that frame. In the frames directory, two files are included for
each frame in frames.csv: 1) frame id.gpr contains the raw
LGPR array in csv format while 2) frame id.gmr contains
the processed LGPR scan with mean removed, as described
in Sec. Calibration. A script for reading and visualizing these
scans is provided in the SDK.

gps The ground truth GPS data includes position and
velocity. Each GPS reading contains sixteen values including
[longitude, latitude, altitude], position and orientation in the
UTM frame [x, y, z, qx, qy, qz, qw], and velocity in the vehicle
frame [ẋ, ẏ, ż, ṙ, ṗ, ẏ]. Note that most GPS measurements
include Differential GPS (DGPS) corrections received from
a fixed base station. However, because our base station
has a range limited to ≈10 km, runs with road type equal
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to highway in the runs.csv file do not have base station
corrections. All of these twelve columns are included, along
with a timestamp in a file called gps.csv which includes all
GPS measurements for the run.

odom The odometry data includes measurements from
the wheel encoders on each of the rear wheels and the
Inertial Measurement Unit (IMU). For each wheel encoder
measurement we include the total distance in meters,
traversed by the left and right rear wheels respectively
along with a timestamp. These measurements are provided
in encoder.csv. Next, the IMU data is a vector of ten
values including 3-vectors for linear acceleration and angular
velocity, and an orientation quaternion. These values, along
with a timestamp, are provided for each IMU measurement.
Finally, for convenience, we also provide odom.csv, which
contains the vehicle position [x, y, z] and orientation
quaternion [qx, qy, qz, qw] with respect to the start frame
calculated by accumulating the wheel encoder and IMU
measurements using a Kalman filter.

camera The LGPR sensor is particularly useful in situations
where camera sensors can fail such as glare, darkness, or
inclement weather. For this reason, we include camera data
for comparison purposes. We use a PointGrey Grasshopper
front-facing camera mounted behind the windshield. Each
frame has resolution 1928x1448. The file camera.csv

contains a table with columns for the frame id of each
camera frame along with the timestamp. The directory
frames/ contains camera images of the form frame id.png,
where each image corresponds to the frame id in the
frames.csv file.

lidar Similar to the camera sensor, we provide lidar data
primarily as a baseline comparison tool. The lidar sensor
is a Velodyne HDL-64 mounted above the roof of the
vehicle offset toward the front (see Fig. 5). It provides
pointcloud data, where each scan contains ≈191,000 data
points, and each point is a 4-vector of [x, y, z, intensity]
giving the geometric position of the point with respect to
the sensor frame, and the intensity of the laser reflection. We
accumulate measurements until a 360° rotation is completed
at a rate of 10Hz and include one scan/revolution. The file
lidar.csv contains a table with a column frame id along with a
timestamp. The directory frames/ contains files frame id.pcd

which include the pointclouds in PCD format Rusu and
Cousins (2011).

Type Total Length (km)

Road Type
highway 316.2
rural 115.2
urban 17.6

Weather
clear 151.8
rain 145.4
snow 151.8

Lane

center 21.6
changing 16.8
left 38.4
right 372.2

Table 3. The GROUNDED dataset contains data collected in a
variety of lane positions, and environment and weather
conditions to support the proposed benchmark challenges.

Figure 5. Top: The Toyotal Prius vehicle platform used to
collect the dataset. Bottom: A schematic showing the positions
of reference frames for the vehicle and each of the sensors.
Blue is the vehicle frame, Red is the OXTS GPS/IMU, Green is
the camera, Magenta is the lidar, and Yellow is the LGPR
sensor. The measured transforms between these frames are
included in the dataset.

Data Collection Platform

Vehicle Infrastructure

The dataset was collected using a Toyota Prius research
platform shown in Fig. 5. The sensors mounted on the vehicle
include wheel encoders, an IMU, GPS, lidar, camera, and
the LGPR radar array. The origin frame for the vehicle is
located in the center of the rear axle, with the x-axis parallel
to the ground and oriented toward the front of the vehicle,
and the z-axis oriented upward. Fig. 5 shows the reference
frames for all of the other sensors as well. Note that all of
the sensors are located on the central plane of the vehicle
(XZ-plane) except for the GPS unit, which is slightly offset.
The actual values for all of these transforms are provided
in the calibration/extrinsic directory, as shown in Fig. 4. In
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the following subsections, we describe the details of each
sensor and how the data was collected, synchronized, and
calibrated.

The data was collected on two computers. The first one,
CAR PC, was connected to a vehicle-wide LAN which
received data from the GPS, IMU, wheel-encoders, and lidar.
It also utilized a USB hub to receive images from the camera.
Due to technical limitations of the LGPR sensor prototype, it
could not be configured to stream the raw data to the vehicle
LAN in real time. Instead, a second computer, LGPR PC,
was used to receive and store the LGPR frames separately.
In Sec. Time Synchronization we describe how we utilize an
accurate GPS time reference to provide time-synchronized
data streams. The CAR PC is a Dell Laptop with an i7
processor running Ubuntu 18.04. The LGPR PC is a Single
Board Computer (SBC) onboard the LGPR sensor prototype
and accessed via Ethernet for data retrieval.

Sensors

The data collection vehicle platform included lidar, camera,
radar, odometry, and gps senosors. Table 4 includes the
models and key features of theses sensors. The following
paragraphs also describe in detail how theses sensors were
mounted and configured.

LGPR Sensor The LGPR sensor was mounted on the rear of
the vehicle by attaching to the trailer hitch. It is a completely
self-contained unit only connected to the vehicle for power.
Here we describe the main components of the LGPR sensor;
for more details see Cornick et al. (2016), which describes
the design of the sensor. This sensor is not commercially
available and there are only a few prototypes, which is the
primary motivation for sharing the data in this work.

As seen in Fig. 6, the main LGPR sensor components
include a 12-element radar array, a switch matrix, an OXTS
RTK-GPS unit, and a processing chassis. The radar array
transmits on a single element at a time, while receiving on
the next element. Each pair of elements thus provides a single
channel of data which produces images 11 pixels wide. Note
that the array is 152 cm wide (the same as the width of the
vehicle) and 61 cm from front to back. While the GPS unit
contained in the LGPR sensor is typically used for onboard
mapping, here we use it only for time-synchronization,
instead using the more accurate base station-corrected GPS
measurements taken onboard the vehicle for groundtruth, as
described in Sec. RTK-GPS

At runtime, the array completes a sweep of all 11 channels
at 126Hz and these data are binned into 369 depth bins to
provide an 11x369 pixel image that spans the width of the

Camera Pointgrey Grasshopper3

Resolution 2736 x 2192
Sensor Sony ICX694
Shutter Global
Megapixels 6

Lidar Velodyne HDL-64

Num. Channels 64
VFOV 26.9°
HFOV 360°
Data Rate 2.2M points/sec
Range 120m

GPS OXTS RT3003

Correction Source RTK Base Station
Positional Accuracy 0.01 m RTK
Roll / Pitch Accuracy 0.03°
Heading Accuracy 0.05°
Rate 100 Hz
Num Antennae 2

Radar Custom LGPR Sensor

Mount Tow-hitch
Num. Channels 11
Num. Radar Elements 12
Discrete Depths 369
Sensor Dimensions 152x61x7.6 cm
Penetration Depth 2-3m

Table 4. An overview of key features for the sensors included
on the autonomous vehicle platform. Additional information can
be found by consulting the specifications provided in the
manufacturer datasheets.

Figure 6. The LGPR sensor used to collect the dataset. The
processing chassis communicated with the switch matrix to
control transmit and receive on the 12 radar elements. The GPS
shown here was used for time synchronization, but groundtruth
information was obtained by a separate GPS unit onboard the
vehicle.

vehicle and penetrates approximately 3m beneath the ground
(the actual depth can vary by region and soil content). The
switch matrix receives these signals and transmits them to
the processing chassis, where the radar images are stored for
later retrieval.
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RTK-GPS An OXTS RT3003 Inertial Navigation System
(INS) was used to provide a groundtruth vehicle position
for all runs. To achieve an accuracy of ≈2 cm, the GPS
sensor requires corrections to the raw GPS signal from a
fixed base station. Note that for all runs with road type equal
to rural or urban we placed and calibrated the base station
in the test region as described in Sec. Calibration. However,
since the base station range is limited to 10 km, the runs
with road type equal to highway do not include base station
corrections.

Odometry The odometry sensors include two magnetic hall
effect wheel encoders, one in each of the rear wheels. These
provide counts as each pole passes the sensor. Additionally,
we utilize the IMU built into the RT3003 to obtain
acceleration and angular rates. Together, the wheel odometry
and IMU data can be used to obtain an interoceptive estimate
of the vehicle motion independent of the exteroceptive
measurements of the GPS and LGPR sensors.

Camera We utilize a front-facing Point Grey Grasshopper
camera with a resolution of 1928x1448 at 6fps. The camera
is mounted behind the windshield to protect it from rain
or snow. Windshield wipers were utilized when required to
ensure the windshield remained clear. The main motivation
for providing camera imagery in this work is to serve as
a baseline to compare how weather affects vision sensors
compared to LGPR.

Lidar A Velodyne HDL-64 sensor is mounted on the roof
of the vehicle. We mount the sensor on the center plane of
the vehicle, slightly forward to obtain a better view of the
road in front of the vehicle at the expense of some occlusion
caused by the vehicle itself in the rear. The Velodyne scanner
spins at 600 RPM, yielding 360-degree scans at 10Hz. The
scans are labeled with the synchronized time at the end of
each revolution; to obtain the time of individual points, one
can linearly interpolate between the time stamps for each
azimuth.

Time Synchronization

As noted in Sec. Vehicle Infrastructure, the LGPR sensor
data is collected in isolation from the other vehicle sensors.
We utilize the GPS time reference on the CAR PC to obtain a
single reference that is accurate to within a few nanoseconds
Lewandowski and Thomas (1991). First, the GPS position
for each LGPR frame is recorded based on the GPS device
incorporated within the LGPR sensor. Next, the GPS sensor
within the vehicle records a data-stream of pairs of time
stamps (tsys, tgps) at 100Hz. Lastly, for each vehicle sensor

(GPS, odometry, camera, and lidar), each data point is
recorded with the corresponding system time ssys.

Then, to synchronize all of the onboard sensor data in post-
processing, we interpolate the GPS reference time for each
sensor data point as:

sgps =
ssys − tisys

ti+1
sys − tisys

(
ti+1
gps − tigps

)
(3)

where
(
tisys, t

i
gps

)
is the closest time reference pair with

tisys < ssys and
(
ti+1
sys , t

i+1
gps

)
is the next consecutive time

reference pair.

The data stream provided by the LGPR sensor contains
geo-referenced radar frames. However, since the position
estimates are obtained with the standard-quality GPS device
integrated in the LGPR sensor, rather than the RTK-GPS
system onboard the vehicle used for ground truth, we cannot
simply match the LGPR frames to the ground truth positions
using their recorded positions. Instead, to obtain accurate
positions for LGPR frames, we first obtain timestamps
by noting that the radar frames are collected at a fixed
frequency of ≈126Hz. Therefore, to obtain timestamps,
the LGPR stream is aligned with the GPS data stream.
We first differentiate the positions from both the LGPR
scans and the RTK-GPS systems using a centered Savitzky-
Golay filter Savitzky and Golay (1964). Next, we obtain the
alignment offset between the velocities by maximizing the
Pearson correlation coefficient between the velocities using
numerical optimization. The result of this maximization,
combined with the fixed frequency of the LGPR scans,
allows every LGPR scan to be labeled with a corresponding
timestamp on the GPS clock.

Calibration

Each of the sensors included in the data stream was
calibrated as needed before each run. Here we describe the
various calibration processes for each sensor. Additionally,
when possible we include the calibration files in the dataset
(see Fig. 4).

LGPR Sensor Calibration The LGPR sensor needs to be
calibrated to ensure changing environmental conditions do
not unduly affect the sensor readings. The sensor includes a
calibration routine which pulses each element for a short time
and measures and records the mean values. This enables the
intensity data to be stored in a mean-centered format, which
helps remove any biases due to ambient conditions. This
allows the device to operate reliably in temperatures ranging
from −5 °C to 50 °C Cornick et al. (2016). We calibrated
the LGPR sensor at the start of each day. Additionally, in
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the event the temperature changed drastically throughout the
day, the calibration routine was repeated in between runs.
For maximum flexibility, we include for each frame both
the raw LGPR frame as frame id.gpr, and the mean-centered
frame as frame id.gmr. The transform between the vehicle
frame and LGPR frame is provided in vehicle to lgpr.yaml

(see Fig. 4).

RTK-GPS Calibration The RTK-GPS system requires
calibration in two ways. Firstly, because the GPS is receiving
base station corrections, all measurements are with respect
to the fixed location of the base station. Any errors in
the measurement of the location of the base station itself
would propagate to the vehicle measurements and reduce
the system accuracy. To mitigate this, we fix the location
of the base station by mounting it in a permanent position.
For each of the road types rural and urban we selected a
fixed base station antenna mount and recorded and averaged
GPS positions for one hour. Once that averaging period was
complete, we record the mean position and use it for all
future runs using that base station position. This ensures
that no errors are introduced between runs due to incorrect
measurement of the base station position. Note that for
road type highway we do not use corrections because of the
limited base station range.

The second calibration necessary for the GPS groundtruth
is a built-in calibration routine in which the vehicle is driven
in several loops and ∞-paths. The manufacturer provides a
software tool for using these drives to fine-tune the position
and orientation of the sensor within the vehicle, as well as
the relative positions of each of the two roof-mounted GPS
antennas. We store those values onboard the device, and
provide them with the dataset in vehicle to gps.yaml (see
Fig. 4).

Camera Calibration To calibrate the Point Grey Grasshop-
per front-facing camera, we utilize the camera calibration
method described here ROS. The intrinsic calibration file
is included in the dataset as intrinsic/camera.yaml. The
measured extrinsic calibration between the camera and the
velodyne is provided in velodyne to camera.yaml, as shown
in Fig. 4.

Velodyne Calibration The Velodyne sensor includes a
factory-provided calibration file that accounts for small
differences in manufacturing and assembly and the effect
they have on the conversion between the measured
azimuth/angle of each point, and its position in the sensor
frame. We apply this calibration file in order to produce the
Velodyne frames found in frame id.pcd. We also include the

calibration file in intrinsic/velodyne.xml. Additionally, we
provide the transform between the Velodyne sensor frame
and the vehicle frame in vehicle to velodyne.yaml, as shown
in Fig. 4.

LGPRNet: Learning to Localize in Weather

Autonomous navigation in inclement weather was demon-
strated in Ort et al. (2020). There, a degradation in the
quality of the localization was found in inclement weather, in
particular for rain. Previously, we described a benchmark to
compare algorithms that address this issue. Here, we demon-
strate an application of using the GROUNDED dataset to
train a Convolutional Neural Network (CNN) to localize in
a variety of weather conditions using a network architecture
we call LGPRNet.

Problem Formulation

To address the Localization in Weather benchmark, we
define the localization problem comprising a prior map MW

in the world frame consisting of a set of N LGPR frames
Fi for i ∈ {1..N} where each frame Fi ∈ RND×NC and
ND is the number of depth bins and NC is the number of
channels in the radar array. Thus, the value Fi,d,c represents
the intensity of the radar return in the ith frame at a particular
depth and channel. Furthermore, each frame Fi is associated
with a pose Pi which contains the pose of the sensor in the
world frame at the time the frame was measured. Next, we
have a target frame FT ∈ RND×NC which is measured when
the vehicle revisits the mapped region. Our goal is to find the
target pose PT which gives the pose of the sensor at the time
FT was measured.

We simplify the problem by noting that even coarse GPS
estimates enable focusing on a Region of Interest (ROI)
which can significantly narrow the size of the map that must
be searched. To this end, we replace the full map MW with
a target specific window WT of length NW , a fixed hyper-
parameter, which selects linearly-spaced frames from MW

in the region of PC , a coarse estimate of the target pose
PT . Since the LGPR collects frames at a fixed frequency, the
spatial density of the map frames varies by the speed of the
mapping vehicle. Therefore, the spatial size of the window
is variable, and can depend on the uncertainty in the coarse
pose estimate.

LGPRNet Architecture

We propose a network architecture for LGPR localization,
LGPRNet, based on the Inception architecture Szegedy
et al. (2015) which excels at detecting features at varying
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scales and uses dimensionality reduction to allow for a very
deep architecture while reducing the computational cost.
The problem of detecting underground radar features is
quite distinct from the ImageNet Deng et al. (2009) object
detection task, for which pre-trained models are available.
Additionally, the dimensionality of the input features is
unique in this problem because the number of channels
in a radar sensor is quite low compared to the number
of depth bins, creating a very narrow aspect ratio (33:1),
while the number of frames in each window region can
be larger than the typical 3-channel, low-aspect-ratio RGB
images used as input in those networks. For these reasons, we
design a custom network architecture (see Fig. 7), where the
layer parameters and kernel shapes are specifically designed
for the unique LGPR feature shapes, and train it using
GROUNDED data.

The input features shape is (B,Nf , NC , ND), where B is
the batch size, NF = NW + 1 is the number of frames in the
input including the frames from the window and the target,
Nc is the number of radar channels, and ND is the number
of depth bins in each frame. Note that while the batch size is
variable, Nf , Nc, Nd, are fixed for a given trained model. For
our implementation Nf = 10, NC = 11, ND = 369. Due to
the unusually large aspect ratio (33:1), we design rectangular
kernels such as (3,11) in the first convolution, and (3,7) in the
second, as well as rectangular max pooling windows such as
(2,3) in the first MaxPool, which balances the sparsity in the
channel dimension with the density in the depth dimension.
Finally, after the last fully connected layer in each of the
three outputs (Main, Aux1, and Aux2) we add a sigmoid
activation to transform to the output range of each pose
dimension.

We choose an output representation which is relative to the
pose of the input window. This obviates the need to include
the real-world pose as an input and simplifies training.
Instead, the predicted pose is a 3-tuple of [longitudinal,
lateral, rotation], where longitudinal is a float in [0,1] which
represents the longitudinal position with respect to the input
window. The lateral position is a float in [0,1] which indicates
the lateral offset from the window with respect to the sensor
width. Since the sensor must be overlapping at least partially
with the map in order to localize, the range 0,1 represents
the full range of [-50, 50]% overlap in the lateral direction.
Finally, the rotation is the angle in radians, normalized to
the distribution in the dataset, where 0 indicates the target
pose is aligned with the center of the map window. In
this way, the model can predict an output pose relative
only to the window, and the final vehicle pose prediction
is then computed using the known window frame poses.

Using window-relative output poses in this way simplifies
training. However, it does impose a limitation on the possible
predictions of the network. For example, the prediction will
always lie within the input window longitudinally, and will
always assume at least 50% overlap with the map frame
laterally. Therefore, it is important to choose a large enough
window to capture the uncertainty in the initial pose estimate.
It would be interesting to also predict an output reflecting the
likelihood that the window doesn’t contain the target scan;
however, we leave that for future work.

Evaluation

Training We train the LGPRNet on 72 runs from the
GROUNDED dataset. Since the goal of this benchmark is
to localize in inclement weather conditions, we choose a
selection of map/target pairs that include different weather
conditions between the mapping and localization. (Please see
Supplementary Material for the complete list.)

Each map/target pair consists of two runs collected on
the same geographic route. To create labeled features, we
use the GPS measurements provided in the dataset. Since
the GPS measurements are provided at 100Hz while the
LGPR measurements are provided at 126Hz we use linear
interpolation between the GPS measurements to obtain a
groundtruth pose at each LGPR frame. Note that extra
care must be given to angular measurements to ensure
interpolation properly wraps around ±π. Next, for each
target scan, a set of training examples is created by selecting
a set of possible map window regions that contain the
target scan. Since each target can be located anywhere
in the window, and the windows can vary in size, there
is a combinatoric number of training examples that can
be obtained from each map/target pair. For example, in a
5-minute drive containing ≈ 50k radar frames, ≈ 100M

training examples can be generated. While this is more than
enough data for training the network, using only data from
a single run would quickly overfit to that location. Instead,
we randomly subsampled 100k samples from each of the 72
runs to obtain a training set of 7.2M labeled examples. for
training.

We further hold back 100k randomly selected examples
for validation and train the network on a single Nvidia
1080Ti GPU until convergence (approx 24 hours). During
training, we perform back-propagation at both the main
output layer as well as two auxiliary outputs, which aids with
training the earlier layers. We weighted these losses 50% on
the output and 25% on each of the auxiliary heads. We also
apply a loss weight on the regressed pose outputs to account
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Figure 7. LGPRNet architecture composed of traditional convolutional layers along with Inception building blocks includes a total of
20 layers (Not including the auxiliary outputs, and considering each inception block a single layer). Notice that many of the kernels
are not square to account for the unusually high aspect ratio of LGPR frames.
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for the different units between the translation and rotation
components, as described in Localization in Weather Metric.

Results To evaluate the trained LGPRNet model, we select
10 distinct map/target run pairs, none of which were included
in the 72 runs used for training. Additionally, we ensured
that there was no geographic overlap between any of the
evaluation runs and the training runs. This ensures that the
model is learning the relative pose between the target and
the map and not learning the map itself. To avoid requiring
LGPR maps to be built specifically for a particular weather
condition, we only use maps collected in clear weather for
the Localization in Weather benchmark. In this evaluation,
we compare the localization quality when the target is in a
variety of weather conditions including clear weather, snow,
and rain, while localizing to the same clear-weather map.
(Please see Supplementary Material for the complete list of
runs used for evaluation.)

Clear Snow Rain

Mean Error Correlation 0.34 0.39 0.77
LGPRNet (Ours) 0.32 0.44 0.47

Lateral Correlation 0.26 0.29 0.40
LGPRNet (Ours) 0.16 0.26 0.26

Longitudinal Correlation 0.17 0.21 0.57
LGPRNet (Ours) 0.24 0.30 0.33

Table 5. The results of the LGPRNet predictions compared the
hand-designed optimal correlation algorithm used in Ort et al.
(2020). The mean distance error (m) is compared as well as its
components in the lateral and longitudinal directions with
respect to the lane direction.

Table 5 shows the evaluation results compared with the
results from Ort et al. (2020), which used a heuristic
correlation-based optimization to localize. For a hypothetical
pose and a given scan in the map, the correlation is calculated
as

rA,B =

∑
i,d

Ai,dBi,d√∑
i,d

A2
i,dB

2
i,d

(4)

where A, and B represent the current scan, and the scan
data from the prior map respectively, i spans the number
of channels, and d spans the number of depth bins. The
optimal match that maximizes rA,B in (4) is then used as
the localization estimate for the correlation baseline (see Ort
et al. (2020) for more details).

We see in Table 5 that the learned model compares
similarly for clear weather and snow, while significantly
improving on the localization quality in rain. Importantly,
the metrics reported for the correlation-based approach were

considered for localization in each weather, to various maps
including both matching and non-matching weather maps.
Here, in keeping with the specification for the benchmark, we
evaluate rain and snow conditions using only maps collected
in clear weather, which is a more challenging task.

We interpret the degradation in localization quality in
rain as being due to the changing dielectric properties
of the soil when it is saturated. This could impact the
radar signal by effectively scaling the entire frame along
the depth dimension. Thus, while the previous correlation-
based approach could not account for this variation in scale,
LGPRNet learns to correct for this through the inclusion
of varying weather conditions in the training set. On the
other hand, the lower error found in the snowy weather
conditions is likely not caused by a systemic change in the
ground dielectric content, since the snow sits mostly above
the ground and doesn’t saturate it like rain does. Instead,
this layer of snow between the sensor and the ground could
introduce some signal attenuation, which would appear as
sensor noise. Similarly, the error in clear weather localization
is likely due in part to sensor noise, as well as imperfect
overlap between the target and map data. One possible
solution that could refine this estimate in practice would be to
fuse these absolute measurements with a proprioceptive state
estimation system including an IMU and/or wheel encoders,
as was done in Ort et al. (2020). However, here we focus on
evaluation of the LGPRNet prediction directly.

Also important to note is that for autonomous vehicles,
error in the longitudinal (along lane) direction is often less
critical than the lateral direction (across lanes). Table 5 shows
that the LGPRNet performs particularly well in the lateral
direction, where it has a maximum of 26 cm of deviation
even in rain and outperforms the correlation approach in
all weather types. This is accounted for by the weights in
the Localization in Weather benchmark described previously.
Using Eq. (1) we compute benchmark values of:

ssnow =0.585

srain =0.595

Finally, we also investigate how the position of the target
in the window, and the size of the search window affect the
localization accuracy. Fig. 8 shows that the optimal position
for the target is in the center of the window, as the error
increases by about 1% at each end. This is likely due to
the center of the window containing the smallest average
distance to the frames in the window. Interestingly, with
respect to window size, there appears to be an optimal size at
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Figure 8. The localization accuracy is affected by the target
position in the window (Top) as well as the size of the search
window (Bottom).

approximately 3.5m. This is likely a factor of the size of the
features in the signal, as very small windows do not contain
enough variation, while very large windows induce error due
to the larger search space. Therefore, these data indicate that
the optimal window size should be the minimum of 3.5m

and the uncertainty of the coarse pose estimate.

Conclusion

In this work, we presented a novel dataset for localization
and mapping research in autonomous driving using a ground
penetrating radar. Our goal is to unlock the potential of
radiogeological navigation, as this sensing modality holds
the promise to enable autonomous vehicle localization even
in the most challenging weather conditions. Together with
the dataset, this work proposes evaluation protocols and
additionally provides camera and lidar data to simplify
comparisons with established algorithms on these sensing
modalities.

There are also several limitations to this work which
should be noted. Firstly, for practical reasons, the data
is limited to urban, rural, and highway environments in
Massachusetts, USA. We hope to be able to expand the
dataset to a wider variety of locations in the future. To this
end, arranging an alternative groundtruth method such as
satellite corrections rather than a fixed base station would
greatly improve the range for the data collection.

Next, additional sensor fusion could be utilized both to
improve the ground truth localization and as a baseline for

lidar and/or camera-based methods. While the reader could
implement this using the sensor streams from the dataset,
these results may also be added to the dataset to improve
usability.

Finally, we provide time synchronization between the
various sensors. However, these timestamps are based on
system time recorded when a data point is received from each
sensor, rather than a trigger used to ensure that all sensor
readings are synchronized which would be more precise.
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Data Split Map ID Run ID Map Weather Run Weather Data Split Map ID Run ID Map Weather Run Weather
Train 6 44 snow clear Train 48 83 clear rain
Train 7 44 snow clear Train 49 82 clear rain
Train 6 45 snow clear Train 49 83 clear rain
Train 7 45 snow clear Train 82 48 rain clear
Train 6 78 snow rain Train 83 48 rain clear
Train 7 78 snow rain Train 82 49 rain clear
Train 6 79 snow rain Train 83 49 rain clear
Train 7 79 snow rain Train 20 58 snow clear
Train 44 6 clear snow Train 20 59 snow clear
Train 44 7 clear snow Train 20 92 snow rain
Train 45 6 clear snow Train 20 93 snow rain
Train 45 7 clear snow Train 21 58 snow clear
Train 78 6 rain snow Train 21 59 snow clear
Train 78 7 rain snow Train 21 92 snow rain
Train 79 6 rain snow Train 21 93 snow rain
Train 79 7 rain snow Train 58 20 clear snow
Train 44 78 clear rain Train 59 20 clear snow
Train 44 79 clear rain Train 92 20 rain snow
Train 45 78 clear rain Train 93 20 rain snow
Train 45 79 clear rain Train 58 21 clear snow
Train 78 44 rain clear Train 59 21 clear snow
Train 79 44 rain clear Train 92 21 rain snow
Train 78 45 rain clear Train 93 21 rain snow
Train 79 45 rain clear Train 58 92 clear rain
Train 10 48 snow clear Train 59 92 clear rain
Train 10 49 snow clear Train 92 58 rain clear
Train 10 82 snow rain Train 93 58 rain clear
Train 10 83 snow rain Train 58 93 clear rain
Train 11 48 snow clear Train 59 93 clear rain
Train 11 49 snow clear Train 92 59 rain clear
Train 11 82 snow rain Train 93 59 rain clear
Train 11 83 snow rain Val 52 53 clear clear
Train 48 10 clear snow Val 52 14 clear snow
Train 49 10 clear snow Val 52 15 clear snow
Train 82 10 rain snow Val 52 86 clear rain
Train 83 10 rain snow Val 52 87 clear rain
Train 48 11 clear snow Val 62 63 clear clear
Train 49 11 clear snow Val 62 24 clear snow
Train 82 11 rain snow Val 62 25 clear snow
Train 83 11 rain snow Val 62 96 clear rain
Train 48 82 clear rain Val 62 97 clear rain

Table 6. Listing of map/target run pairs from GROUNDED used for training and evaluation of the LGPRNet model.
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