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MapLite 2.0: Online HD Map Inference
Using a Prior SD Map

Teddy Ort1, Jeffrey M. Walls2, Steven A. Parkison2, Igor Gilitschenski2,3, and Daniela Rus1

Abstract—Deploying fully autonomous vehicles has been a sub-
ject of intense research in both industry and academia. However,
the majority of these efforts have relied heavily on High Definition
(HD) prior maps. These are necessary to provide the planning
and control modules a rich model of the operating environment.
While this approach has shown success, it drastically limits
both the scale and scope of these deployments as creating and
maintaining HD maps for very large areas can be prohibitive. In
this work, we present a new method for building the HD map
online by starting with a Standard Definition (SD) prior map such
as a navigational road map, and incorporating onboard sensors
to infer the local HD map. We evaluate our method extensively
on 100 sequences of real-world vehicle data and demonstrate that
it can infer a highly structured HD map-like model of the world
accurately using only SD prior maps and onboard sensors.

Index Terms—Mapping, Autonomous Vehicle Navigation, HD
Maps, High Definition Maps, Mapless Driving, Localization

I. INTRODUCTION

MANY automated vehicle systems rely on information
encoded in a High Definition (HD) map that is trans-

formed into the vehicle reference frame at run time to aid
decision making. HD maps typically represent road topology,
geometry, and attributes such as speed limits. Such systems
require precise knowledge of the vehicle position with respect
to the map. HD map creation is nontrivial and often includes
immense resources to supervise the curation and annotation
process. Moreover, map data becomes outdated as the struc-
ture of the environment evolves requiring costly maintenance
procedures. At the same time, reliance on HD maps presents
a safety risk during the period between the structural change
and the next map update cycle.

Addressing this challenge requires a conceptually different
approach to the AV perception stack. Human drivers do not
rely on highly detailed maps and directly combine real-time
scene understanding with knowledge provided by classical,
Standard Definition (SD), street maps. Mimicking this ability
requires novel perception techniques that combine raw sensor
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Fig. 1. An online HD map overlaying lidar intensity as a vehicle traverses
an intersection. The white and yellow lines indicate inferred road and lane
boundaries while the red lines denote intersection entry/exit ports. The
background shows a projection of the lidar intensity data into the birds-eye-
view (BEV) that was used to help generate the HD map online.

data with coarse prior SD maps to obtain a representation
similar to current HD maps.

Existing online perception techniques focus on estimation
of certain map attributes such as, lane boundaries or road
topology. These often perform classification or segmentation
in a dense sensor representation such as pixels or pointclouds.
Those that do infer vectorized features, typically do not pro-
vide a sufficiently rich representation comparable to modern
HD map data. Generally, downstream planning and control
modules require the HD map to query important details such
as the shape of the road ahead, the location, direction, and
connectivity of adjacent road lanes, and the feasible traversals
through an intersection. Feature detectors that merely detect
the features in the scene, without inferring the underlying
structure cannot satisfy this requirement.

We aim to enable the much richer HD map-like represen-
tation by leveraging an SD prior map. While the SD map
provides valuable topological information, integrating it is
particularly challenging because these maps were designed
for humans and the annotation cannot be assumed to be
sufficiently precise. Thus, enabling SD map based driving
using an online computed HD map-like representation is a
challenging and largely open problem.

In this paper, we present a system to replace or augment
meticulously generated HD maps. Our method infers road
geometry and topology, e.g., lane and intersection sizes, given
a publicly available coarse road graph (in our case Open-
StreetMap [1]) and online perception data. We convert the
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Fig. 2. In the proposed system, an SD prior map is fused with onboard sensor data to perform an online estimation of the HD map near the vehicle.

coarse road graph into an HD map prior and a rasterized birds-
eye-view (BEV) representation. Additional BEV images are
generated from a combination of sensor inputs. These are used
as inputs to a Convolutional Neural Network (CNN) trained
to predict their semantic labeling using existing HD map data
for training. The semantic segmentation is converted into a
set of label-specific distance transforms. Finally, a structured
estimator maintains the local map estimate and integrates the
SD map prior. In summary, the contributions of this work
include:

• A new method for online HD map inference from raw
sensor data and a prior SD map.

• A fully relative HD map representation that is designed
specifically to enable both the incorporation of an SD
prior map, as well as online perception-based updates.

• Evaluation of our approach on real-world scenes with
diverse road layouts and appearance.

II. RELATED WORK

A. Offline map generation

Automatically generating HD maps in full or in part as an
offline inference task is an attractive problem for its ability
to reduce manual supervision. [2] introduced a method for
estimating road and lane boundaries given a coarse road graph.
They formulated the inference task as an energy minimization
problem where potentials encoded aerial image appearance
and prior knowledge, e.g., lane smoothness. [3] designed a
system to estimate crosswalk geometry given accumulated
LIDAR intensity BEV rasters and approximate intersection
location determined from a coarse SD map. The authors
trained a network to provide input to a structured estimator
that determines a consistent configuration of crosswalk pa-
rameters. [4] proposed a method for inferring lane boundaries
for highway scenes given accumulated LIDAR intensity BEV
rasters. They structured their estimate as a directed acyclic
graphical model where each node in the graph encoded
geometric and topological information, and the nodes were
iteratively explored to expand the graph. [5] developed a
lane graph estimation engine using vision and LIDAR data
aggregated within a BEV representation. Their method is

capable of handling arbitrary intersection topologies, but does
not incorporate prior SD map information.

B. Online map inference

An alternative approach (and the one we take here) to
dealing with the challenges of annotating HD maps, is to
infer lane geometry and topology online. [6] trained a neural
network to segment lanes in stereo images to produce BEV
lane geometry and topology. Their method focused on mid-
roadway estimation and was not extended into intersections or
other complex topologies. [7] proposed an end-to-end system
for lane line estimation where the architecture includes image-
based instance segmentation followed by trained perspective
transformation and a least-squares fit of a parameterized curve.
They suggest that fitting parameterized lines in a pseudo-
ground plane (akin to a BEV frame) results in a more simple
parameterization compared to an image frame. PiNet [8] can
produce quick and accurate lane boundary estimates by clus-
tering image frame keypoints into instances. HDMapNet [9]
estimates road boundaries, lane lines, and other semantic
features in combined LIDAR and camera data to produce a
BEV semantic map around the vehicle. Note that the above
methods typically produce class instances, e.g., lane lines,
but do not provide the topological information that many AV
stacks expect.

Similar to the work we present here, MapLite [10] uses
the topological information from an SD map to navigate. It
was capable of piloting a vehicle with no prior HD map. But
Maplite focused on simple road geometries in rural scenes –
it did not create an HD map representation to enable use on
multi-lane roads or in urban areas.

III. METHOD

A. State Description

1) SD Map Model: In this work, we assume the availability
of SD prior maps. Unlike HD Maps, SD maps are widely avail-
able and have minimal storage and transmission requirements.
For comparison, the HD map of a small city with 20,000 miles
of road could require hundreds of gigabytes [11]. In contrast,
an SD map of the same region could be stored in just 3.5
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gigabytes. These savings come at a cost however. The SD
map contains much less information than the HD equivalent.

We consider an SD map with a graph-like data structure
MSD = {N,E} where the nodes, N , are intersections and
the edges, E, are polylines representing road centerlines. Each
edge also has associated semantic attributes such as the road
name, speed limit, and number of lanes in each direction.
Note that such maps are commonly used for navigation and
OpenStreetMap.org [1] makes them freely available for much
of the globe. In this work, we do not require a high level of
accuracy in the road centerline geometry. For example, it is
common for OpenStreetMap centerline features to have errors
on the order of 10m and the current system is designed to
handle that. However, we do require the topology (e.g. road
connectivity) of the SD map to be correct.

   
   

      

       

   

Fig. 3. The HD map model state consists of a set of parameters which define
the geometries relative to an SD prior basemap (shown in blue). The red lines
indicate intersection entry/exit ports and the black circles indicate knot points.
In this illustrative example, there would be many more parameters required to
define the full shape of the map elements shown. However for figure clarity,
we only include one of each type.

2) HD Map Model: Although HD maps have been widely
adopted for autonomous driving, there is currently no universal
format for HD maps [12]. We take inspiration from several
widely used standards in designing our HD map model.
Similar to the Navigation Data Standard (NDS) [13] we utilize
separate layers for routing and lane level geometry which
we generate online. As in the OpenDrive [14] model we
parameterize lane geometry with respect to road centerlines.
Since we are estimating the model online, and do not assume
the SD map centerlines to be highly accurate, we parameterize
even the lane boundaries that coincide with the centerlines
in the SD map which allows the online map to not only
encode lane geometries that aren’t in the SD map, but also
shift the position of a road from the centerline in the SD map.
Our primary objective in designing the HD map model is to
provide a data structure with the geometric information needed
for downstream planning and control while allowing it to be
estimated online from the SD prior and sensor data.

The HD map model consists of a hierarchy with three
primary layers.

1) The road layer consists of roads and intersections. Each
road may contain multiple lanes and directions of travel
and must begin and terminate with either an intersection
(node degree, D > 2) or a road terminal (D = 1).

2) The section layer consists of road sections with a con-
stant number of lanes. There are also transition regions
(D = 2) where two sections with different numbers of
lanes meet. Each section begins and ends at either a
transition or the end of a road.

3) The segment layer consists of road segments with a
constant number of lanes in a single direction. Thus,
a section which allows travel in two directions would
contain two road segments. Every road segment begins
and ends at the nodes of its corresponding road section.

The HD map state is defined as MHD = {MSD,Θ} which
combines an SD basemap with a set of parameters Θ that
encode the HD map geometry relative to the SD map. For
example, if the SD map contains an edge representing a road
centerline, the HD map will include that edge, along with a
set of parameters that encode the real-world road geometry
with respect to that SD map edge as will be described next.

Fig. 3 shows an example intersection with three adjacent
roads. The SD map edges are shown as blue lines, while the
nodes are blue circles. Each intersection node has a degree D
corresponding to the number of roads at the junction. The HD
map model locates the entry and exit ports of the intersection
(shown as red lines in Fig. 3) using a set of four parameters per
port θdi , θai , θri , and θli for i ∈ [1, D]. These define the distance
along the SD centerline to the junction port, the angle of the
road-intersection boundary, and the widths in the right and
left directions. Thus, these 4D parameters fully describe the
shape and position of all of the entry and exit ports for an
intersection.

Each road segment is discretized into K knot points with
fixed offset distance knot dist along the SD map edge. A
set of parameters θrbi and θlbi for i ∈ [1,K] define two
polylines which represent the right and left boundaries of the
road segment. Next, for a segment with L lanes, there are an
additional L · K parameters θli,j for i ∈ [1,K] , j ∈ [1, L].
These define the perpendicular distance from each knot point
to the corresponding lane line in multi-lane segments. To-
gether, these parameters are used to augment an SD basemap
with the precise lane-level geometry and topology typically
offered by a prior HD map.

B. Bird’s Eye View (BEV) Semantic Segmentation

The semantic segmentation pipeline combines multiple raw
sensor streams and processes them to generate features in
the Bird’s Eye View (BEV) for input to the HD map state
estimation update step as shown in Fig. 2 Perception. The
BEV frame is a natural choice given that the SD and HD
maps are also typically represented in this frame.

1) BEV Projection: To generate a BEV feature, we first
accumulate a set of N consecutive pointclouds PV

t−N , . . . , PV
t

in the vehicle frame where each pointcloud combines all of
the lidar sensor measurements in the indicated time interval
[t− 1, t]. Each time interval, is also associated with a set
of N images from each of M cameras with image field-
of-view spanning some (possibly overlapping) portion of the
pointclouds PV . Each point is then “painted” with RGB values
by projecting the point into the image frame. Next, each of the
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Fig. 4. The first step in the perception pipeline is to project the sensor data
into the Bird’s Eye View (BEV) frame. On the left is a lidar intensity frame,
next is an elevation map, and last is an RGB frame. The red trace shows the
path of the vehicle in each frame.

colored pointclouds for PV
t−N , . . . , PV

t−1 are projected into the
current vehicle frame. Although each frame requires N − 1
transformations, each pointcoud PV need only be painted
once using this scheme. Finally, the accumulated, painted,
pointcloud PV

t is projected into the BEV frame by discretizing
the space around the vehicle into a grid in the X − Y plane,
and aggregating the intensity, height, and RGB color values
in each grid.

Not all cells in the grid will have data points due to both
occlusions and the sparsity of lidar. Therefore, there is a
trade-off between a very high resolution BEV grid with sharp
features but many empty cells, and a low resolution grid
with fewer cells missing data. To obtain a good balance, we
compute the BEV at several resolutions, and then select the
highest resolution available cell at each position which yields
a variable resolution BEV image with higher resolution in
locations with more dense sensor data.

We also choose specific targeted aggregation functions to
best match the desired feature type. Namely, for the intensity
feature, we use a mean aggregation, for the RGB features we
choose the median for outlier rejection, and for the height
feature, we use the minimum which efficiently filters out mov-
ing objects and gives an elevation map of the ground surface.
Fig. 4 shows an example set of BEV features accumulating
four seconds of data from four lidar sensors and six cameras
arranged around the ego vehicle.

2) Semantic Segmentation: In order to estimate the HD map
online we generate semantic features to infer the location of
important map objects such as road boundaries and lane lines.
To this end, we train a semantic segmentation model based
on a ResNet-101 backbone [15]. The input to this network
is a six channel image of the BEV frame with channels =
{I, Z,R,G,B, SDT} where I is the mean intensity of the
lidar points, Z is the minimum height, R,G, and B are the
median color channels from camera images, and SDT is a
distance transform where each pixel gives the distance to the
road centerlines in the SD prior map.

To reduce training requirements, we use transfer learning
to fine-tune a DeepLabv3 [16] image segmentation model
pretrained on the COCO [17] dataset. We modify this network
by increasing the input channels to match the six channels in
our features and initialize the weights using the pretrained
input layer. Next, we modify the head of the network to
have an output shape of [B,C,W,H] where B is the batch
size, C is the number of classes to predict, and W ,H are
the width and height of the features. We use C = 4 for

classes={background, roads, intersections, lines}.
We compile a training dataset using a ground truth (human

annotated) HD map to generate segmented BEV labels of the
four classes. We use a cross-entropy loss with the modifi-
cation that any invalid (Nan-valued) pixels in the input BEV
(corresponding to cells occluded or out of range of the vehicle
sensors) are excluded from the loss calculation.

3) Signed Distance Transform: The final step in the per-
ception pipeline entails generating signed euclidean distance
tranforms [18] for each of the four classes in the semantic
segmentation network output. The distance transforms contain
the metric distance to the nearest feature of each class.

We require a modification to the standard distance transform
to account for occlusions. Recall that the distance transform
DT (f) for a binary image f evaluates to 0 everywhere
f = 0 (the background) and the euclidean distance to the
nearest background point everywhere f = 1 (the foreground).
Note that the signed distance transform is calculated as the
sum of the forward and negative inverse distance transforms
SDT = DT (f) − DT (1 − f). This transform has exactly
the same values in the foreground as DT (f) (the distance to
the nearest background point), but has negative values in the
background giving the distance to the nearest foreground point.
Simply treating occluded points as background would have the
undesired effect of spurious edges near missing data. Instead,
we use an indicator function to generate the forward distance
transform treating the missing data as foreground and add the
negative inverse distance transform treating the missing values
as background. This ensures the final distance transform only
contains measurements that represent distances to other valid
data and removes the artifacts missing data would otherwise
introduce.

Discarding the background and missing data cells, we
ultimately construct three output signed distance transforms:
road regions, intersections regions, and lane lines. These are
the inputs used to estimate the state of the HD map online as
described next.

C. Online HD Map State Estimation

In the online HD map state estimation step, the HD map
model parameters are updated to incorporate new information
from the vehicle sensors. We formulate this problem as a
maximum likelihood estimation in which we seek to find Θ∗

such that
Θ∗ = argmax

Θ
P (Θ|Z1:t) (1)

Where Θ is the set of decision variables defining an HD
map, and Z1:t is the set of all sensor measurements. With
Bayes rule we can decompose this as

P (Θ|Z1:t) ∝Θ P (Zt|Θ, Z1:t−1) · P (Θ|Z1:t−1) (2)

The second term represents our prior belief over the state
given our prior measurements, while the first term is an update
step that integrates a new measurement to obtain an updated
belief. We design a tracking algorithm to perform the state
estimation updates online. In the next subsection, we describe
how we initialize the prior P (Θ) for the first time before
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Parameter Notation Unit Distance Transform

Segment Boundary θ
{rb/lb}
i [m] Road Regions

Junction Distance θdi [m] Intersections

Junction Angle θai [rad] Intersections

Junction Width θ
{r/l}
i [m] Intersections

Lane Boundary θli,j [m] Lane Lines

TABLE I
PARAMETER TYPES IN THE HD MAP MODEL

obtaining any measurements, and then we discuss how the
update term is calculated to integrate new sensor data.

1) HD Map Initialization: We model the prior map param-
eters as gaussians where we require not only an initial estimate
for the value of each parameter, but also an estimate of the
uncertainty: P (Θ) = N (µΘ,ΣΘ). Furthermore, while we
can use the result from the last iteration in subsequent steps,
in the initial estimate before the first sensor measurement
is integrated, we only have the SD map available. Thus,
we construct the HD map model, and initialize all of the
parameters solely from the SD prior. We call this initial HD
map estimate the MapLite Prior and it is constructed in an
offline process without requiring any online sensor data. To
obtain it, we first collect a training set of human annotated
HD maps. Next, we compare these ground truth maps to the
corresponding SD maps and calculate the parameter values
that would generate an HD map that best matches the ground
truth. Finally, we regress initial values and uncertainties from
the distribution of these parameters over the training region.
For example, we regress the value of the parameter θrb, a road
boundary parameter, in our ground truth dataset as a function
of the number of lanes in each segment. We then initialize
the parameter values at the mean of this distribution, and the
variance as the sum of the squared residuals.

In this way, we can generate an initial guess for the
full HD map state. As expected, we found that parameters
that represent features such as lane width which are fairly
consistent initialize with relatively low uncertainty, while those
that encode features like intersection shape, which are much
more varied, initialize with relatively high uncertainty.

Note that since all of the parameters are relative mea-
surements, the HD map is agnostic to the reference frame
(e.g. transforming the basemap geometry transforms all of the
HD map geometry but importantly, the parameter values are
unchanged). This allows the inference to be performed in the
local vehicle frame, which is constantly changing with respect
to the map frame, without requiring any transformation of the
estimated parameters and uncertainties in the update step.

2) Belief Update: In order to update the state estimate,
we need to obtain the sensor likelihood from measurements
encoded as the set of distance transforms (roads, intersections,
and lane lines) obtained in the Semantic Segmentation step
Sec. III-B. We can simplify the expression in Eq. (2) by as-
suming that the measurements are conditionally independent,

P (Zt|Θ, Z1:t−1) = P (Zt|Θ) (3)

First, note that most of the decision variables are not in
view in a given update step. Therefore we define Θt as:

Θt = {∀θ ∈ Θ s.t. θ is in view at time t}

The update step is then reduced to only updating Θt as our
estimate of all other state variables is unchanged.

To find the sensor update distribution, we pair each of the
five parameter types found in our HD map representation with
an associated distance transform as shown in Table I. Let
X (θ) be a rendering function that returns one or more points
in the vehicle frame representing the geometry encoded in
each parameter (see Fig. 3). For example, X

(
θdi
)

returns the
point on the given junction line at the distance θdi from the
intersection node. Similarly, X (θai ) returns a set of points
distributed along the junction line rotated by the angle θai .
Next, let δ (X) be the mean distance of the points in X (θ)
to the associated distance transform in Table I. The likelihood
component of the objective function is obtained as

P (Zt|µΘt) = 1− δ (θ)

δmax

where δmax is the value at which the distance transforms are
clipped (in our case 10m). Therefore, as the distance between
the encoded geometry and its observation increases, the like-
lihood term will become smaller. Integrating this estimate to
obtain its normalization constant would be computationally
prohibitive. However, since its purpose in the objective func-
tion is to balance the observation with the prior, we instead
multiply these two terms with parameter weights which we
tuned for best performance.

We then solve for the optimal mean by combining Eqs (2, 3)
to approximate Eq (1) as:

µΘt
= argmax

µΘt

[
P (Zt|µΘt

) , P (µΘt
|Θt−1)

]
WT

µ

where WT
µ is a weight vector that balances between the

importance of the prior and the update.
The associated uncertainty is approximated as

ΣΘt
=

[
P (Zt|µΘt) , P (µΘt |Z1:t−1)

]
WT

Σ

where WT
Σ balances between confidence in the prior, and the

measurement.
While we cannot empirically measure this uncertainty, we

tune this function to strike a balance between our confidence
in new measurements versus prior measurements. Numerical
optimization is then used online to obtain updated parameter
means and uncertainties at each measurement update.

IV. EVALUATION

A. Dataset

We evaluate our approach by collecting a dataset of 100
real-world autonomous vehicle sequences in Michigan and
California. The vehicle platform includes four lidar sensors
and six cameras giving a 360-degree view around the vehicle.
Throughout each sequence, the ground truth vehicle pose is
obtained using a factor-graph based SLAM system imple-
mented in Ceres [19] that computes an optimized trajectory
by associating landmark observations to a prior fixed landmark
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map. We estimate the trajectory estimation error in this system
to be < 10 cm. This prior map was also the reference for the
manually annotated ground truth.

Intersections represent the most complex component of the
HD map inference problem as merely detecting lanes on a
straight road is relatively much simpler. For this reason, we
focus each sequence on an intersection traversal, beginning
the sequence ten seconds prior to the intersection entrance,
and terminating it five seconds after the exit. Each sequence
is composed of a series of frames at 10Hz where each frame
includes:

1) Six synchronized camera images (1936x1216) giving a
surround view of the vehicle.

2) An accumulated lidar pointcloud from the four lidar
sensors over a four second interval.

3) A local region from the SD prior map downloaded from
OpenStreetMap.org.

4) A local region in the hand annotated HD map used for
evaluation purposes only.

We collected a total of 100 sequences, ranging in duration
from 10 to 25 seconds. These include traversals through 18
unique intersections. All sequences are non-overlapping such
that any two sequences that traverse the same intersection do
so in either a different direction, and/or at a different time. We
randomly select 10 sequences to hold back for validation, with
the remaining 90 used for training. Each frame is processed
sequentially, by first projecting to BEV, performing the seman-
tic segmentation to generate feature distance transforms, and
then updating the HD map model parameters that are within
the sensor view at each time step. The final HD map model
obtained after a single traversal is then evaluated as described
below. Since we are interested in online estimation in this
work, we do not save the updated maps between sequences,
instead, each sequence begins with a new model derived only
from the SD prior map.

B. Semantic Segmentation Results

While semantic segmentation is not the main focus of this
paper, we report the results of our segmentation pipeline here
to evaluate the role of this component in the overall system.
We train the semantic segmentation CNN using the 90 training
sequences on a single Nvidia Titan XP GPU for 2.5 hours.
The input features are 6 channel 1936x1216 BEV images
obtained by concatenating {Red, Green, Blue, Lidar Intensity,
Height, OSM Distance Transform}. The output includes per-
pixel labels in {Background, Road, Intersection, Lane Line,
Out of Range} where out of range refers to pixels in the BEV
that were empty (e.g. due to occlusion).

We evaluate both overall and per-class accuracy on both
the training and validation splits of the dataset. We achieve an
overall accuracy of 93% on the validation sequences, with per-
class accuracies of Background: 97%, Road: 82%, Intersection
96%, and Lane Line: 90%. Fig. 5 shows the confusion matrix
over these classes. Notably, although the network performs
well at predicting most classes, it does show some confusion
between road and lane markings. We also compare the results
over the training runs and find them to be similar at: 95%

Background Road Intersection Lane Line

Background

Road

Intersection

Lane Line

0.97 0.02 0.0044 0.0078

0.016 0.82 0.012 0.15

0.0081 0.014 0.96 0.015

0.0048 0.082 0.015 0.9
0.2

0.4

0.6

0.8

Fig. 5. The confusion matrix for the semantic segmentation. The true class
is on the vertical axis, with the prediction on the horizontal.

overall. This indicates that the training dataset is diverse
enough to avoid significant overfitting.

C. MapLite 2.0 Results

In evaluating the performance of MapLite 2.0 we compare
the HD map state estimate after a single traversal to the
hand annotated ground truth map. We limit the evaluation
to a 30m swath around the vehicle to include only the
portion of the map likely to have passed within range of
the onboard sensors. Since the HD map is based on the
underlying SD map prior, while the hand annotated ground
truth map was generated entirely independently, there is no
guaranteed one-to-one correspondence between features. For
example, the decision to consider a divided road two separate
one-way roads, as opposed to a single two-lane road has some
ambiguity. Therefore, we propose two metrics for evaluating
the overall quality of the HD map estimate.

1) Vehicle Trace Accuracy is a coarse metric that relies
on the fact that the vehicle always drove on the road. We
compute the portion of the driven path that falls within
the road boundaries in the HD map estimate.

2) Road-region Intersection Over Union (IOU) is a finer
metric that compares the regions defined as road in the
annotated map, to those in the HD map.

We compute these metrics over all the validation sequences
and also calculate the standard deviation to measure the
consistency of the results.

For comparison, we also compute these metrics on a “Raw
OSM” map, which is a naively generated road region obtained
by inflating the OpenStreetMap road centerlines a fixed nomi-
nal lane width. Additionally, we run the same analyses on the
“MapLite Prior” which is the HD map structure, derived from
the OSM prior, along with the initial estimates of the state
parameters, but before any onboard sensor data is integrated.
Finally, to better understand how the semantic segmentation
accuracy affects our results, we also show an “Oracle” result.
This evaluates the same structured estimator algorithm, but
using ground truth semantic segmentation instead of the CNN.

Table II shows the results of these evaluations. It is interest-
ing that simply applying the MapLite Prior already improves
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Vehicle Trace Accuracy IOU Road Regions

Raw OSM 0.55 (0.40) 0.59 (0.13)

MapLite Prior 0.87 (0.18) 0.77 (0.04)

MapLite 2.0 (Ours) 0.98 (0.04) 0.88 (0.04)

Oracle 0.99 (0.01) 0.89 (0.05)

TABLE II
MAPLITE 2.0 EVALUATION RESULTS. VALUES REPRESENT MEAN (STD)

the Vehicle Trace Accuracy from 55% to 87% without requir-
ing any additional real-world data. This indicates that applying
the HD map structure with the data driven initialization is
sufficient to obtain a strong prior for the HD map inference.
The MapLite 2.0 Posterior, which includes the inference
from the onboard perception increases this accuracy to 99%.
Compared to the Vehicle Trace Accuracy metric the IOU
metric is finer-grained as it compares the entire observed road-
region rather than only the vehicle trace. Here, we once again
see increasing accuracy with each step as well as decreasing
standard deviation which indicates more consistency.

The reason the IOU does not reach unity is likely due to
three factors: 1) The HD map is derived from the SD prior
OpenStreetMap while the ground truth map is hand annotated
independently. Therefore, there is some inherent ambiguity as
to what should be labeled “road” (e.g. paved dividers in semi-
divided roads, private driveways, etc.) 2) Model limitations
that do not exactly represent reality. For example, our inter-
section model, links each entry/exit port with a straight line
segment for simplicity, which is only a coarse approximation
of real-world intersection regions used for evaluation. 3) The
inference optimization could get caught in a local minimum.
Computational resources preclude exhaustive search of the
entire parameter space, therefore, a local minimum could
prevent the model from reaching the optimal state.

While the oracle does outperform the MapLite 2.0 model
slightly, it demonstrates that the majority of the remaining
error lies in the inference step. Therefore, to improve these
metrics, future work should focus on the three sources of
inference error described previously, rather than on improving
the semantic segmentation step to have the greatest impact.

Fig. 6 shows several illustrative real-world examples. The
first two columns include the components that can be run
offline as the MapLite prior is derived from the SD prior before
integrating sensor data. The last three columns show how the
sensor data is segmented to create the distance transforms
used to update the HD Map state estimate. One issue of note
occurs in row (4) where the road includes a center turn lane
which our model does not explicitly handle. This causes the
yellow centerlines to appear jagged. In contrast, in row (2) the
divided center is correctly inferred online, even though this is
not represented in the prior. In future work, we could expand
our model to explicitly account for special lane scenarios such
as this. In row (5) an error in the road edge at a single point
in the road exiting the intersection at the top leads to a “kink”
in the otherwise smooth road estimate. Providing a term to
encode a “smoothness” constraint may provide more realistic
results.

V. DISCUSSION AND CONCLUSION

In this work, we have presented a novel HD map model
representation that is fully relative to an underlying SD map
prior. We have shown that it can provide a reasonable HD
map prior directly from an available SD map. Furthermore,
we have designed a perception and inference system that can
be used to estimate the HD map model parameters to generate
an online HD map estimate from only an SD prior and onboard
perception.

This can be useful not only for allowing autonomous
vehicles to navigate in previously unmapped regions, but also
for at least two other important applications. 1) An online
HD map could be run in the background of a fully mapped
solution to detect changes and suggest map maintenance, and
2) MapLite 2.0 could be used online to jumpstart mapping
of unexplored regions autonomously, which could then be
combined to create an optimized offline map for future use.

There are also some important limitations to this system
that should be considered. The map model is inevitably an
approximation and cannot capture all real-world complexity.
While we found that our model is sufficient to represent a
large variety of road types in multiple cities in our dataset,
care must be taken to account for new road structures. For
example, there is some judgement required when choosing
the information that should be gleaned from the SD map,
versus inferred online. In this work, we utilize the lane number
attribute in the SD map as a prior, but detect the actual lane
boundaries from onboard sensors. Conversely, we don’t use
crosswalk information, even though that is available in some
regions. Therefore, care should be taken to select what to
include in the prior and what to infer online based on the
availability in the region of interest.

In [10], we focused on probabilistic estimation of the vehicle
localization to a coarse SD map. In this work, we instead
consider the problem of inferring the HD map online, while
relying on our SLAM system for localization. This allows us
to directly evaluate the HD map inference problem in isolation.
In the future, we hope to combine these systems to enable both
localization of the vehicle to an SD map, and online inference
of the HD map simultaneously.

Finally, we chose a 2D map representation for simplicity
which precludes the ability to handle multi-level roads (e.g.
overpasses). Handling multiple levels through a map-splitting
approach, or an extension to 3D would be needed for deploy-
ment on such roads.
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