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Abstract
We introduce a family of pruning algorithms that provably sparsifies the parameters of a

trained model in a way that approximately preserves the model’s predictive accuracy. Our
algorithms use a small batch of input points to construct a data-informed importance sampling
distribution over the network’s parameters, and either use a sampling-based or deterministic
pruning procedure, or an adaptive mixture thereof, to discard redundant weights. Our pruning
methods are simultaneously computationally efficient, provably accurate, and broadly applicable
to various network architectures and data distributions. The presented approaches are simple
to implement and can be easily integrated into standard prune-retrain pipelines. We present
empirical comparisons showing that our algorithms reliably generate highly compressed networks
that incur minimal loss in performance relative to that of the original network.

1 Introduction

The deployment of large state-of-the-art neural networks to resource-constrained platforms, such
as mobile phones and embedded devices, is often prohibitive in terms of both time and space.
Network pruning algorithms have the potential to reduce the memory footprint and inference time
complexity of large neural network models in low-resource settings. The goal of network pruning is
to discard redundant weights of an overparameterized network and generate a compressed model
whose performance is competitive with that of the original network. Network pruning can also
be used to reduce the burden of manually designing a small network by automatically inferring
efficient architectures from larger networks. Moreover, pruning algorithm can enable novel insights
into the theoretical and practical properties of neural networks, including overparameterization and
generalization [5, 28].

Existing network pruning algorithms are predominantly based on data-oblivious [38, 17] or
data-informed [16, 27, 31, 50, 26] heuristics that work well in practice in combination with an
appropriate pruning pipeline that incorporates retraining. However, existing approaches generally
lack provable guarantees (including data-informed approaches with the exception of [6] which is
only applicable to multi-layer perceptrons) and thus provide little insight into the mechanics of the
pruning algorithms and consequently into the pruned network.

We close this research gap by introducing SiPP, see Figure 1 for an overview, a family of network
pruning algorithms that provably compresses the network’s parameters in a data-informed manner.
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Small batch of input points Compute edge sensitivities 
for every neuron

Original Pre-trained Network

Importances take into account activations

Original Pre-trained Network

Sparsify the incoming edges 
to each neuron

Compressed Network

Sample and reweigh edges; 
remove unsampled weights

Importance Sampling

Output compressed network

Figure 1: The overview of our randomized method consisting of 4 parts. We use a small batch of input
points to quantify the relative contribution (importance) of each edge to the output of each neuron. We then
construct an importance sampling distribution over the incoming edges and sample a small set of weights for
each neuron. The unsampled parameters are then discarded to obtain the resulting compressed network with
fewer edges.

Building and improving on state-of-the-art pruning methods, our algorithm is simultaneously provably
accurate, data-informed, and applicable to various architectures including fully-connected (FNNs),
convolutional (CNNs), and recurrent neural networks (RNNs). Relative to existing approaches,
SiPP exhibits provable guarantees that hold regardless of the specific state of the network, i.e., it
is simultaneously applicable to untrained, trained, or partially trained networks, and hence tends
to perform consistently well across diverse pruning pipelines that incorporate various amounts of
retraining. In addition, the theoretical analysis of SiPP provides novel analytical compression bound
for deep neural networks that, e.g., can be utilized in the context of generalization bounds [6, 5, 2, 4,
35, 54].

This paper contributes the following:
1. A provable and versatile family of pruning algorithms, SiPP, that combines novel sample size

allocation and adaptive sparsification procedures to prune network parameters.
2. An analysis of the resulting size and accuracy of the compressed network generated by SiPP

that establishes novel compression bounds for a large class of neural networks.
3. Empirical evaluations for state-of-the-art iterative prune + retrain, random-init + prune + train

scenarios on fully-connected and convolutional with comparisons to baseline pruning approaches
highlighting the ability of SiPP to span both theory and practice.

2 Related Work

Traditional approaches. Techniques such as Singular Value Decomposition (SVD) and regular-
ized training [11, 12, 22, 23, 45, 21, 3, 51] were traditionally applied to compress networks. Other
approaches in this realm exploit the structure of weight tensors to induce sparsity [53, 42, 9, 10, 48].
Our work, in contrast, is a data-informed approach with guarantees on the size, relative error incurred
at each output, and accuracy of the compressed network.
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Network pruning. Weight pruning [25] hinges on the idea that only a few dominant weights
within a layer are required to approximately preserve the output. Approaches of this flavor were
investigated by [24, 13], e.g., by embedding sparsity as a constraint [20, 1, 29]. A popular weight-
based pruning method is that of [17, 38], where weights with absolute values below a threshold are
removed. A recent approach of [26] prunes the parameters of the network by using a mini-batch
of data points to approximate the influence of each parameter on the loss function of a randomly
initialized network. Other data-informed techniques include [16, 30, 27, 32, 31, 50, 28]. For an
extensive overview see [15, 7, 49]. Despite their favorable empirical performance, these approaches
generally lack rigorous theoretical analysis of the effect that the discarded weights can have on the
model’s performance.

Theoretical foundations. Recently, [5] introduced a compression method based on random
projections and proved norm-based bounds on the compressed network for points in the training set
only. In contrast, our work provides approximation guarantees on the network’s output that hold
even for points outside the training set. A coresets-based [14, 8] approach for compressing fully-
connected networks was introduced by [6] but is limited to FNNs and ReLUs. Our approach builds
on this coresets-based framework to be applicable to various architectures and activation functions.
Our algorithm also exhibits stronger error guarantees by mixing deterministic and sampling-based
pruning strategies, by optimally allocating the sample sizes across the network to minimize the
approximation error, and by establishing stronger network compression bounds using novel error
propagation techniques.

3 Background

We consider a neural network fθ : X → Y consisting of L layers with parameters θ and distribution
D over the input space X from which we can sample i.i.d. input/label pairs (x, y).

Network notation. For a given input x ∼ D, we denote the pre-activation and activation of layer
` by Z`(x) and A`(x), respectively. Note that fθ(x) = AL(x), Z0(x) = x, and A`(x) = φ`(Z`(x)),
where φ`(·) denotes the activation function. We consider any multi-dimensional layer that can be
described by a linear map with parameter sharing, e.g. fully-connected layers, convolutional layers,
or LSTM cells. Specifically, for a layer ` the pre-activation Z`(x) of layer ` is described by the
linear mapping of the activation A`−1(x) with W `, i.e., Z`(x) = W ` ∗A`−1(x), where ∗ denotes the
operator of the linear map, e.g., the convolutional operator. Moreover, we denote by c` the number
of parameter groups within a layer that do not interact with each other, e.g., individual filters in
convolutional layers. Then, let Z`i (x) = W `

i ∗A`−1(x), i ∈ [c`], denote the ith pre-activation channel
of layer ` produced by parameter group W `

i .

Problem definition. For given ε, δ ∈ (0, 1), our overarching goal is to use a pruning algorithm to
generate a sparse reparameterization θ̂ of θ such that ‖θ̂‖0 � ‖θ‖0 and for x ∼ D the `2-norm of
reference network output fθ(x) can be approximated by fθ̂(x) up to 1± ε multiplicative error with
probability greater than 1− δ, i.e., P(

∥∥fθ̂(x)− fθ(x)
∥∥ ≤ ε ‖fθ(x)‖) ≥ 1− δ.
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Algorithm 1 SiPP (θ,B,S)

Input: θ = (W 1, . . . ,WL): weights of the uncompressed neural network; B ∈ N: sampling budget; S: a set
of n i.i.d. validation points drawn from D
Output: sparse weights θ̂ = (Ŵ 1, . . . , ŴL)

1: m`
i ← OptAlloc(θ,B,S) ∀i ∈ [c`], ∀` ∈ [L] . optimally allocate budget B across parameter groups

and layers
2: for ` ∈ [L] do
3: Ŵ ` ← 0; . Initialize a null tensor
4: for i ∈ [c`] do
5: sj ← EmpiricalSensitivity(θ,S, i, `) ∀wj ∈ W `

i . Compute parameter importance for each
weight wj in the parameter group

6: Ŵ `
i ← Sparsify(W `

i ,m
`
i , {sj}j) . prune weights according to SiPPDet, SiPPRand, or SiP-

PHybrid such that only m`
i weights remain in the parameter group

7: end for
8: end for
9: return θ̂ = (Ŵ 1, . . . , ŴL);

4 Method

In this section, we present an overview for our family of pruning algorithms, SiPP: Sensitivity-
informed Provable Pruning (see Figure 1 and Algorithm 1). In its core, SiPP proceeds as follows:
(1) optimally allocate a given budget across layers and parameter groups to minimize the theoretical
error bounds resulting from our analysis (OptAlloc, Line 1); (2) compute the relative importance
of individual weights within parameter groups (EmpiricalSensitivity, Line 5); (3) prune weights
within each parameter group using the desired variant of SiPP according to their relative importance
(Sparsify, Line 6); (4) repeat (2) and (3) for each parameter group and each layer.

OptAlloc(θ,B,S) In the course of our analysis (see Section 5) we establish relative error bounds
for the approximation Ẑ`i (x) = Ŵ `

i ∗A`−1(x) of the form Ẑ`i (x) ∈
(
1± ε`i(m`

i)
)
Z`i (x) for individual

parameter groups. Roughly speaking, the associated relative error ε`i(m
`
i) is a (convex) function of

the parameter group, the input, and the allocated budget m`
i . Thus in order to optimally utilize a

desired budget B we aim to minimize the following objective during the allocation procedure:

min
m`

i∈N ∀i∈[c`], ∀`∈[L]

∑
`∈[L], i∈[c`] ε

`
i(m

`
i) s. t.

∑
`∈[L], i∈[c`]m

`
i ≤ B.

We note that the integral constraint m`
i ∈ N prevents us from efficiently finding a solution, we relax

it to m`
i ∈ R to find the optimal fractional solution. We then use a technique like randomized

rounding [43] to find an approximately optimal integral solution. Depending on the variant of SiPP,
however, this step is not necessary.

EmpiricalSensitivity(θ,S, i, `) To estimate the relative importance of a weight wj within a
parameter group W `

i , we use and extend the notion of empirical sensitivity (ES) as first introduced
in [6] for fully-connected layers only. In its essence, ES quantifies the maximum relative contribution
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of a weight parameter wj to the output (pre-activation) of the layer compared to other weights in
the parameter group. More formally, let the ES sj of wj in parameter group W `

i be defined as

sj := maxx∈S maxa(·)∈A wjaj(x)/
∑

k wkak(x), (1)

where we assume W `
i ≥ 0, A`−1(x) ≥ 0 for ease of exposition (see Section 5 for the generalization to

all weights and activations). We note that the definition of sj entails two maxima. The maximum
over data points maxx∈S ensures that ES approximates the relative importance of wj sufficiently
well for any i.i.d. data point x ∼ D. The maximum over patches A, which are generated from
A`−1(x), ensures that ES approximates the relative importance of wj sufficiently well for all scalars
in the output Z`i (x) that require wj (c.f. parameter sharing). To further contextualize the purpose
of patches A, consider a single parameter group within a convolutional layer, i.e., a filter. The
filter gets slid across the input image to generate the output image repeatedly applying the same
weights. Thus in order to quantify the importance of some weight wj we need to consider its relative
importance across all sliding windows, henceforth requiring maxa(·)∈A.

Sparsify(W `
i ,m

`
i , {sj}j) Equipped with a budget, c.f. OptAlloc, and a notion of parameter

importance, c.f. EmpiricalSensitivity, we introduce the three variants of SiPP, all of which
exhibit provable guarantees as outlined in Section 5, to prune weights from a parameter group:
1. SiPPDet: we deterministically pick the m`

i weights with largest sensitivity and zero out the
rest of the weights to construct Ŵ `

i .
2. SiPPRand: we construct an importance sampling distribution over weights wj using their

associated sensitivities sj , then sample with replacement until we obtain a set of m`
i unique

weights to construct Ŵ `
i .

3. SiPPHybrid: we evaluate the theoretical error guarantees (see Section 5) associated with the
two other methods, and prune using the method that incurs the lower relative error.

We note that while SiPPDet is particularly simple to implement, SiPPHybrid provides the biggest
amount of flexibility and consistently good prune results since it can adaptively choose for each
parameter group whether to prune using SiPPDet or SiPPRand.

5 Analysis

In this section, we outline the theoretical guarantees for SiPP. The full proofs can be found in the
supplementary material. We start out by establishing the core lemmas that constitute the relative
error guarantees for both SiPPDet and SiPPRand for the case where W `

i ≥ 0, A`−1(x) ≥ 0 for
ease of exposition. Specifically, we establish relative error guarantees for each individual output
patch that is associated with a parameter group. We then outline the steps that are required to
generalize the analysis to all weights and activations. Finally, we show – by means of composing
together the error guarantees from individual output patches, parameters groups, and layers – how
to derive the analytical compression bounds for the entire network.

Empirical sensitivity

In the previous section we introduce the notion of ES, see equation 1, as a means to quantify the
importance of weight wj relative to the other weights within a parameter group W `

i . Using ES we
establish a key inequality that upper bounds the contribution of wjaj(x) to its associated output
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patch z(x) =
∑

k wkak(x) for any x ∼ D with high probability (w.h.p.) under mild regularity
assumption on the input distribution to the layer.

Lemma 1 (Informal ES inequality). For weights wj from parameter group W `
i and an arbitrary

input patch a(·) we have w.h.p. for any x ∼ D that wjaj(x) ≤ Csjz(x), where z(x) denotes the
associated output patch and C = O(1).

The ES inequality is a key ingredient in bounding the error of SiPPDet and SiPPRand in
terms of sensitivity. Specifically, Lemma 1 puts the individual contribution of a weight to the output
patch in terms of its sensitivity and the output patch itself. The inequality hereby holds w.h.p.
for any data point x ∼ D which enables us to bound the quality of the approximation even for
previously unseen data points. We leverage Lemma 1 in the subsequent analysis to quantify the
approximation error of an output patch when the output patch was only approximately computed
using a subset of weights, i.e., with the weights that remain after pruning.

Error guarantees for SiPPDet

Recall that SiPPDet prunes weights by keeping the m`
i weights of parameter group W `

i with largest
ES. Now let I denote the index set of all weights in W `

i and Idet the index set of weights with largest
sensitivity that are kept after pruning such that |Idet| = m`

i . We bound the incurred error of the
approximation by considering the difference between the output patch and the approximated output
patch, i.e., the difference between z(x) =

∑
j∈I wjaj(x) and ẑdet(x) =

∑
j∈Idet wjaj(x).

Lemma 2 (Informal SiPPDet error bound). For weights wj from parameter group W `
i , an arbitrary

associated input patch a(·) ∈ A, and corresponding output patch z(·) SiPPDet generates an index
set Idet of pruned weights such that for any x ∼ D w.h.p. |ẑdet(x)− z(x)| ≤ εdetz(x), where
εdet = C

∑
j∈I\Idet sj.

The proof of Lemma 2 follows from the fact that the difference between the approximate output
patch ẑdet(x) and the unpruned output patch z(x) is exactly the sum over the contributions from
weights that are not in the pruned subset of weights Idet. Using Lemma 1 we then bound the error
in terms of the sensitivity of the pruned weights. Intuitively, ES of an individual weight precisely
quantifies the relative error incurred when that weight is pruned. The resulting relative error can
thus be described by the cumulative ES of pruned weights.

Error guarantees for SiPPRand

Here we prune weights from a parameter group by constructing an importance sampling distribution
from the associated ESs. Specifically, some weight wj is sampled with probability qj = sj/

∑
k∈I sk

and we repeatedly sample with replacement until the corresponding set of sampled weights contains
m`
i unique weights. Each sampled weight is then reweighed by the number of times it was sampled

divided by the total number of samples and its sample probability to construct the approximate
output patch, i.e.,

ẑrand(x) =
∑

j∈Irand
ŵjaj(x) =

∑
j∈Irand

nj

Nqj
wjaj(x),

where Irand denotes the index set of weights that were sampled at least once, nj denotes the number
of times weight wj was sampled, and N =

∑
j∈Irand

nj denotes the total number of samples. We
then bound the incurred error by analyzing the random difference between the approximated output
patch and the original output patch, i.e., |ẑrand(x)− z(x)|, establishing the following error guarantee.
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Lemma 3 (Informal SiPPRand error bound). For weights wj from parameter group W `
i , an

arbitrary associated input patch a(·) ∈ A, and corresponding output patch z(·) SiPPRand generates
a set of pruned weights such that for any x ∼ D w.h.p. |ẑrand(x)− z(x)| ≤ εrandz(x), where
εrand = O(

√
S/N) and S =

∑
k∈I sk denote the relative error and sum of ESs, respectively.

The proof proceeds in two steps. First, we show that the (random) approximation is an
unbiased estimator of the original parameter group, i.e., E [ẑrand(x)] = z(x), which follows from
the reweighing term of ŵj . Second, we show that using Bernstein’s concentration inequality [47]
the sampling distribution exhibits strong subGaussian [47] concentration around the mean, i.e., the
approximate output patch is ε-close to the original, unpruned output patch w.h.p. Specifically, we
leverage Lemma 1 to bound the variance of the approximate output patch using the cumulative ES
S =

∑
k∈I sk of the parameter group.

Discussion of error bounds and SiPPHybrid

Most notably, SiPPRand is an unbiased estimator regardless of the budget, while SiPPDet is
always an underapproximation becoming increasingly worse in expectation with lower budget. On
the other hand, if the parameter group is dominated by a few weights, SiPPDet can directly
captures these weights whereas SiPPRand inherent randomness from the sampling procedure may
introduce additional sources of failure. Combining the strengths of both, we introduce SiPPHybrid,
which evaluates both theoretical error guarantees before pruning a parameter group to adaptively
choose the better prune strategy.

Generalization to all weights

Previously, we have assumed that both the parameter group and input activations are strictly
non-negative, i.e., W `

i ≥ 0 and A`−1(x) ≥ 0. To handle the general case, we split the parameter
group and input activations each into a positive and negative part representing the four quadrants
such that each quadrant is now strictly non-negative. We can then incorporate each quadrant into
our pruning procedure to ensure that the error guarantees hold simultaneously for all quadrants.
To obtain error bounds for the actual pre-activation we introduce ∆`, which quantifies the “sign
complexity” of the overall approximation for a particular layer to quantify the additional complexity
from considering the alternating signs of each quadrant, see supplementary material for more details.

Network compression bounds

In the previous section we have outlined how to obtain error guarantees for individual output patches.
Naturally, since the guarantees hold for all patches within a parameter group and individual parameter
groups within a layer are independent from each other, we can simultaneously establish norm-based
error guarantees for the entire pre-activation of a layer, i.e.,

∥∥∥Ẑ`(x)− Z`(x)
∥∥∥ ≤ ε

∥∥Z`(x)
∥∥ w.h.p.

Moreover, assuming the activation function is entry-wise and 1-Lipschitz continuous, the same
relative error guarantees hold for the activation of layer. Note that any common activation function
satisfies the above assumption, including and all others listed in PyTorch’s documentation [36].
Finally, we have to consider the effect of pruning multiple layers simultaneously and the implications
on the final output fθ(x) = AL(x) of the network. Informally speaking, we incur two sources of error
from each layer. (1) the error associated from pruning within layers and (2) the error associated
with propagated the incurred error throughout the network to the output layer. We quantify the
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error within layers using our patch-wise guarantees and the sign complexity ∆` of the layers. We
quantify the propagated error across layers by upper bounding the layer condition number, κ` which
quantifies the relative error incurred in the output for some relative error incurred within the layer.
Intuitively, the concept of the layer condition number is closely related to the Lipschitz constant
between some layer and the output of the network. Below, we informally state the compression
bound when pruning the entire network with SiPPRand.

Theorem 4 (Informal compression bound). For given δ ∈ (0, 1) and budget B SiPP (Algorithm 1)
generates a set of pruned parameters θ̂ such that ‖θ̂‖0 ≤ B, Pθ̂,x

(∥∥fθ̂(x)− fθ(x)
∥∥ ≤ ε ‖fθ(x)‖

)
≥ 1−δ

and ε = O(
∑L

`=1 κ
`∆` maxi∈[c`](S

`
i − S`i (N `

i ))), where S
`
i and S`i (N

`
i ) is the sum over all and the

largest N `
i ESs, respectively, and N `

i is the budget allocated for parameter group W `
i .

We note that the compression bound is proportional to the sum of cumulative ESs for each
parameter group, a term which arises in numerous applications of coresets [14]. Moreover, we see
the layer condition number κ` and sign complexity ∆` of each layer appear in the final bound. Both
terms are related to how injecting error simultaneously in each layer (by pruning the network) affects
the overall output of the network and are related to concepts such as the Lipschitz constant of
the network and/or interlayer cushion as introduced in related work that establishes generalization
bounds for neural networks [5, 34]. Like other recent work in the field [5, 44] our work highlights the
intrinsic connection between the compression ability and generalization ability of neural networks.

6 Experiments

In this section, we evaluate and compare the performance of our algorithm, SiPP, on pruning
fully-connected, convolutional, and residual networks. We embed our pruning algorithm into pruning
pipelines including retraining to empirically test its performance and test it for scenarios involving
significant amounts of (re)-training as well as a prune pipeline that utilizes no more training epochs
than regular training. To be able to compare our pruning approach SiPP to competing pruning
approaches, we consider standard retraining pipelines that are network-agnostic and yield state-of-
the-art pruning results [26, 38]. Specifically, we consider two scenarios – iterative prune + retrain
and random-init + prune + train – as described below.

6.1 Experimental Setup

Architectures and data sets. We train and prune networks on CIFAR10 [46] and ImageNet [39].
We consider ResNets20/56/110 [18], WideResnet16-8 [52], Densenet22 [19], VGG16 [40], CNN5 [33]
and ResNet18, ResNet101 [18] for CIFAR10 and ImageNet, respectively.

Training. For both training and retraining we deploy the standard sets of hyperparameters as
described in the respective papers. All hyperparameters are listed in the supplementary material.

Pruning algorithms. We consider the following pruning algorithms to be incorporated into the
pruning pipelines discussed above:

• SiPPDet. We prune the entire network deterministically. Note that in this case (due to the
sample size allocation procedure) SiPPDet corresponds to global thresholding of sensitivity
(reminiscent of weight thresholding).
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• SiPPRand. We prune the entire network using importance sampling.
• SiPPHybrid. We use our combined pruning approach as outlined in Algorithm 1.
• WT. We globally prune weights according to their magnitude [17, 38].
• Snip. We globally prune weights according to the (data-informed) magnitude of the product

between weight and gradient [26].
We note that WT (“learning rate rewinding”) is the current state-of-the-art for iterative

prune+retrain pipelines [38] while Snip is the current state-of-the-art for random-init + prune
+ train [26]. We also report comparisons against a broader set of pruning pipelines in the supple-
mentary material.

6.2 Iterative prune + retrain
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Figure 2: Results on the pruning performance of
a ResNet18 trained on ImageNet using iterative
prune+retrain.

Methodology We deploy an iterative prune
+ retrain scheme that proceeds as follows:
1. train network to completion;
2. prune a fixed ratio of parameters from the

network;
3. retrain using the same hyperparameters as

during training;
4. iteratively repeat steps 2., 3. to obtain

smaller prune ratios.
This procedure as used in [38, 28] is shown to
produce state-of-the-art prune results although
it requires significant amount of retraining re-
sources. We choose it for its simplicity and
network-agnostic hyperparameters. Due to the
expensive nature of iterative prune+retrain we
choose to only evaluate it for SiPP but not
the other variants of our algorithm as it is the
simplest and we observed little difference in performance between the three variations. In the
supplementary material, we provide additional (experimental) justification that supports our claim.

Results. Figure 3 summarizes the results of the iterative prune + retrain procedure for various
CIFAR10 networks. The results were averaged across 3 trained networks. Our empirical evaluation
shows that our algorithm consistently performs comparably to state-of-the-art WT with learning rate
rewinding [38]. We note that Snip’s performance is much lower is these scenarios. We suspect this
is due to the gradients being close to zero for a fully-trained network (the pruning step is performed
after training in this scenario). In Figure 2 we show results for a ResNet18 trained, pruned, and
retrained on ImageNet. As in the case of CIFAR10 networks we observe that SiPP performs en par
with WT.

6.3 Random-init + prune + train

Methodology. On the other "extreme" of possible pruning pipeline, we consider the following
scenario as described in [26]:
1. randomly initialize the network;
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2. prune the network to the desired prune ratio;
3. train the network using the regular hyperparameters.

While (due to the limited amount of training) this pipeline does not achieve as high prune ratios
as the above scenario, it is simple and requires much less training epochs overall. It also serves as
a useful experimental platform to understand if pruning methods are able to unearth important
connections inherent in the network.

Results. In Figure 4 the prune results for various CIFAR10 networks are shown. We note that for
low prune ratios all pruning methods perform uniformly well, which most likely can be attributed
to the overall overparameterization of the tested networks. For higher prune ratios, we observe
vastly different performance. Specifically, WT’s performance drops to 10% test accuracy (uniformly
at random for CIFAR10) for prune ratios beyond 90%. We suspect that weights do not contain
sufficient information about the importance of the connection before training and thus WT fails. On
the other hand, Snip performs consistently well due to the consideration of data and the gradients
of weights. We note that SiPPHybrid specifically, which adaptively mixes SiPP and SiPPRand
according to the theoretical bounds, performs well across all tested networks and achieves the same
prune performance as Snip. For deeper networks (ResNet20 and ResNet56) in particular, we observe
all SiPP variations performing well or even outperforming Snip.

6.4 Discussion

For our experiments we have embedded SiPP into two maximally diverse pruning pipelines in terms of
the amount of (re-)training epochs, which constitutes the majority of computational cost in pruning.
By doing so, we highlight the versatility and robustness of SiPP in performing well across many
different tasks. While traditional pruning methods, such as WT and Snip (for further comparisons,
see the supplementary material), perform inconsistently when used in the context of alternative
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Figure 3: The delta in test accuracy to the uncompressed network for the generated pruned models trained
on CIFAR10 for various target prune ratios. The networks were pruned using the iterative prune+retrain
pipeline.
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Figure 4: The test accuracy for the generated pruned models trained on CIFAR10 for various target prune
ratios using the random-init + prune + train pipeline.

pruning pipelines we observe that SiPP serves as a consistent plug-and-play solution to the core
pruning method of a pruning pipeline. Among the SiPP variants, we see that SiPPDet tends to
perform particularly well for small prune ratios (such as in the case of iterative prune+retrain) while
SiPPRand performs the best for extreme prune ratio (such as in the case of random-init + prune +
train). SiPPHybrid usually finds a close-to-optimal mixture of strategies and thus provides the
most versatility among the SiPP variants, which comes at the cost of increased implementation
effort.

7 Conclusion

In this work, we presented a simultaneously provably and practical family of network pruning
methods, SiPP, that is grounded in a data-informed measure of sensitivity. Our analysis establishes
provable guarantees that quantify the trade-off between the desired model sparsity and resulting
accuracy of the pruned model establishing novel analytical compression bounds for a large class
of neural networks. SiPP’s versatility in providing strong prune results across a variety of tasks
suggests that our method inherently considers the crucial pathways through the network, and does
not merely operate by considering the properties, e.g., values, of the network parameters alone.
We envision that SiPP can spur further research into network pruning by providing a robust core
pruning method that can be reliably integrated into any pruning pipelines with close-to-optimal
prune performance.
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A Overview of Supplementary Material

In the following, we provide a quick overview of the material discussed in the supplementary material.
We start out by providing a more complete problem definition including introducing additional
notation that is required for our analysis (Section B). Subsequently, we introduce SiPP in full
length including the generalization to all weights (Section C). We then provide a detailed analysis of
SiPP and its variants to back up the informal claims of the main paper (Section D). Finally, we
provide details and hyperparameters for our experimental setup and additional experimental results
(Section E).

B Notation and Problem Definition

The set of parameters θ of a neural network with L layers is a tuple of multi-dimensional weight
tensors corresponding to each layer, i.e., θ = (W 1, . . . ,WL). The set of parameters θ defines the
mapping fθ : X → Y from the input space X to the output space Y. We consider the setting
where we have access to independent and identically distributed (i.i.d.) samples (x, y) from a joint
distribution defined on X ×Y from which we can gather a training, test, and validation data set. To
this end, we let D denote the marginal distribution over the input space X .

B.1 Network Notation

Layers. For a given input x ∼ D, we denote the pre-activation and activation of layer ` by Z`(x)
and A`(x), respectively. Note that

fθ(x) = AL(x), A0(x) = x, and A`(x) = φ`(Z`(x)),

where φ`(·) denotes the activation function for layer `. We consider any multi-dimensional layer that
can be described by a linear map with parameter sharing, e.g. fully-connected layers, convolutional
layers, or LSTM cells. Specifically, for a layer ` the pre-activation Z`(x) of layer ` is described by
the linear mapping of the activation A`−1(x) with W `, i.e.,

Z`(x) = W ` ∗A`−1(x),

where ∗ denotes the operator of the linear map, e.g., the convolutional operator.

Parameter groups. We denote by c` the number of parameter groups within a layer ` that do
not interact with each other, e.g., individual filters in convolutional layers. Then, let

Z`i (x) = W `
i ∗A`−1(x), i ∈ [c`],

denote the ith pre-activation channel of layer ` produced by parameter group W `
i . Then the entire

pre-activations Z`(x) of a layer ` is constructed by appropriately concatenating the individual
pre-activations from individual parameter groups, i.e.,

Z`(x) =
[
Z`1(x), . . . , Z`c`(x)

]
.

Moreover, we let η` ∈ N denote the number of scalar values of Z`(·) and let η =
∑L

`=1 η
`. Finally,

let ρ denote the maximum number of parameters within a parameter group, i.e., ρ = maxi,` ‖W `
i ‖0.

16



Patches. Within a parameter group, parameters may be used multiple times, c.f. parameter sharing,
in order to produce the output Z`i (x) = W `

i ∗ A`−1(x). For example, in case of a convolutional
layer the filter W `

i gets “slid” across the input A`−1(x) of the layer in order to produce one output
pixel after another. Hereby, the filter acts on a distinct patch of the layer input A`−1(x) in order to
produce a specific output pixel z(x) ∈ Z`i (x), where with slight abuse of notation z(x) denotes a
scalar entry of Z`i (x). To precisely specify the associated operation that produces the output z(x) we
define by A`i the set of patches of the layer input A`−1(x) that are required to produce the output
Z`i (x). Specifically, let a(·) ∈ A`i denote some patch of A`i . Then, a(·) ⊆ A`−1(·) is defined such that
a dot product between the parameter group W `

i and the patch a(·) produces the associated output
scalar z(x), i.e.,

z(x) = 〈W `
i , a(x)〉 =

∑
k∈I`i

wkak(x),

where I`i denotes the index set of weights for the parameter group W `
i and wk, ak(x) denote a

scalar entry of the parameter group and patch for some input x ∼ D, respectively. Note that
η` =

∑
i∈[c`]

∣∣A`i∣∣.
The notation of patch maps A lets us conveniently abstract away some of the implementation

details of the linear map ∗ without restricting ourselves to a particular type of linear map ∗. For
example in the context of convolutional layers, the actual linear map ∗ can significantly vary
depending on the parameter settings such as stride length, padding, and so forth. It also enables us
to consider other layers, such as recurrent layers, at the same time. In this case, A can be generated
by considering each recursive input to the layer as a separate patch.

In the case of two-dimensional convolutions (i.e. for images), we note that our notion of patch
maps corresponds to the Unfold operation in PyTorch [37], which we find to be a helpful reference
to further contextualize the concept of patch maps.

B.2 Problem Definition

We now proceed to formally state the problem definition that motivates the use of SiPP and
subsequent analysis. To this end, let the size of the parameter tuple θ, ‖θ‖0, to be the number of all
non-zero entries in the weight tensors W 1, . . . ,WL.

Problem 1. For given ε, δ ∈ (0, 1), our overarching goal is to use a pruning algorithm to generate a
sparse reparameterization θ̂ of θ such that ‖θ̂‖0 � ‖θ‖0 and for x ∼ D the `2-norm of the reference
network output fθ(x) can be approximated by fθ̂(x) up to 1± ε multiplicative error with probability
greater than 1− δ, i.e.,

Pθ̂,x
(∥∥fθ̂(x)− fθ(x)

∥∥ ≤ ε ‖fθ(x)‖
)
≥ 1− δ,

where ‖·‖ = ‖·‖2 and Pθ̂,x considers the randomness over both the pruning algorithm and the network’s
input.

C Method

In this section, we provide additional details for SiPP as introduced in the main part of the paper.
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Algorithm 2 SiPP (θ,B, δ)
Input: θ = (W 1, . . . ,WL): weights of the uncompressed neural network; B ∈ N: sampling budget; δ ∈ (0, 1):
failure probability;
Output: θ̂ = (Ŵ 1, . . . , ŴL) : sparse weights

1: S ← Uniform sample (without replacement) of K log (8 η ρ/δ) points from validation set
2: {m`

i}i,` ← OptAlloc(θ,B,S) ∀i ∈ [c`], ∀` ∈ [L] . optimally allocate budget B applying Lemma 7 to
evaluate the resulting relative error guarantees

3: for ` ∈ [L] do
4: Ŵ ` ← 0; . Initialize a null tensor
5: for i ∈ [c`] do
6: {sj}j ← EmpiricalSensitivity(θ,S, i, `) ∀wj ∈W `

i . Compute parameter importance for each
weight wj in the parameter group according to Definitions 2 and 3

7: Ŵ `
i ← Sparsify(W `

i ,m
`
i , {sj}j) . prune weights according to SiPPDet, SiPPRand, or SiP-

PHybrid such that only m`
i weights remain in the parameter group

8: end for
9: end for
10: return θ̂ = (Ŵ 1, . . . , ŴL);

C.1 Overview

Algorithm 2 provides an extended over view of SiPP. Moreover, in Algorithm 3 we present Sparsify,
which is the sub-routine to adaptively prune weights from a parameter group according to either
SiPPDet, SiPPRand, or SiPPHybrid.

C.2 Details regarding OptAlloc

As mentioned in Section 4, OptAlloc proceeds by minimizing the sum of relative error guarantees
associated with each parameter group for a given overall weight budget B, i.e.,

min
m`

i∈N ∀i∈[c`], ∀`∈[L]

∑
`∈[L], i∈[c`] ε

`
i(m

`
i) s. t.

∑
`∈[L], i∈[c`]m

`
i ≤ B.

Hereby, m`
i and ε

`
i(m

`
i) denote the desired number of weights and the associated theoretical error

in parameter group W `
i after pruning, respectively. We evaluate the theoretical error according to

Lemmas 6 and Lemma 7 when pruning with SiPPDet and SiPPHybrid or SiPPRand, respectively.
Note that in order to evaluate Lemma 7 we have to first convert m`

i to the expected number of
required samples in order to obtain m`

i unique samples, which is also shown in Line 4 of Algorithm 3.

C.3 Details regarding EmpiricalSensitivity

We note that the empirical sensitivity (ES) sj of a weight wj in the parameter group W `
i is given by

Definition 2, where we define ES as the maximum of the relative parameter importance gj(x) over
a set S of i.i.d. data points. To account for both negative weights and activations, we utilize the
generalized parameter importance as defined in Definition 3 to compute gj(x) for a particular input x.
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Algorithm 3 Sparsify(W `
i ,m

`
i , {sj}j)

Input: W `
i : parameter group to be pruned; m`

i : assigned budget; {sj}j : sensitivities associated with weights
in parameter group
Output: Ŵ `

i : sparse parameter group

1: S ←
∑

j∈I`
i
sj . Compute sum of sensitivities

2: S̃ ← SC
3 log(16η/δ)

3: {qj}j ← sj
S . Compute sample probabilities for SiPPRand

4: N ← N(m`
i , {qj}j) . Get expected number of required samples to obtain m`

i unique samples
5: Idet ← subset of indices from I`i corresponding to the largest m`

i sensitivities (c.f. Lemma 6)

6: εrand ← S̃+
√

S̃(S̃+6N)

N . c.f. Lemma 7
7: εdet ← C

∑
j∈(I\Idet)

sj . c.f. Lemma 6
8: if (εrand > εdet or always SiPPDet) and not always SiPPRand then
9: Ŵ `

i ← prune weights from W `
i , i.e set to 0, that are not in Idet and keep the rest

10: else
11: {nj}j ∼Multinomial({qj}j , N) . Sample N times and return the counts
12: Ŵ `

i ← prune weights such that ŵj =
nj

Nqj
wj for each weight ŵj , j ∈ I`i in the parameter group

13: end if
14: return Ŵ `

i

To ensure that ES holds with probability at least 1− δ for all patches and parameters simultaneously
we have to appropriately choose the size of S, c.f. Line 1 of Algorithm 2 and Section D.4.

C.4 Details regarding Sparsify

In Algorithm 3 we present the pruning strategy for both SiPPDet and SiPPRand as shown in
Line 9 and Lines 11, 12, respectively. Recall that SiPPHybrid adaptively chooses between both
strategies according to the associated error guarantees, which get computed in Lines 7 and 6 for
SiPPDet and SiPPRand, respectively. We then choose the better strategy accordingly, see Line 8.
We can also choose to always prune using SiPPRand or SiPPDet as indicated in Line 8.

C.5 Simple SiPP

We can greatly simplify our pruning algorithm if we prune all parameter groups using SiPPDet. To
see this consider the solution to OptAlloc when evaluating the relative error according to Lemma 6.
Since the relative error for a particular parameter group in this case is the sum over sensitivities that
were not included and the objective of OptAlloc is to minimize the sum over all relative errors
the optimal solution is to globally keep the weights with largest sensitivity. In other words, pruning
with SiPPDet only results in global thresholding of weights according to their sensitivity. The
resulting procedure is shown in Algorithm 4. Note that this procedure is very reminiscent of simple,
global weight thresholding [17, 38] but using sensitivity instead of the magnitude of the weights as
prune criterion. In contrast to weight thresholding, however, SiPPSimple still exhibits the same
theoretical error guarantees as SiPP.

19



Algorithm 4 SiPPSimple (θ,B, δ)
Input: θ = (W 1, . . . ,WL): weights of the uncompressed neural network; B ∈ N: sampling budget;
δ ∈ (0, 1): failure probability;
Output: θ̂ = (Ŵ 1, . . . , ŴL) : sparse weights

1: S ← Uniform sample of K log (16 η ρ/δ) points from validation set

2: Compute sensitivity for all weights in the network using S

3: Prune weights globally by keeping the B weights with largest sensitivity

4: Return θ̂ = (Ŵ 1, . . . , ŴL)

D Analysis

In this section, we establish the theoretical guarantees of SiPP as presented in Algorithm 2 and
state our main compression theorem.

D.1 Outline

We begin by considering the sparsification of an arbitrary output patch in an arbitrary parameter
group and layer assuming that both the input to the layer and the weights are non-negative. To this
end, we first establish the empirical sensitivity (ES) inequality that quantifies the contribution of an
individual scalar weight to an output patch (Section D.2 and informal Lemma 5.1). We then establish
the relative error guarantees for each variation of SiPP for an arbitrary output patch (Section D.3
and informal Lemmas 5.2, 5.3). Next, we formally generalize the approximation scheme to arbitrary
weights and input activations (Section D.4). Finally, we provide our formal network compression
bounds by composing together the error guarantees from individual layers and parameter groups.
(Section D.5).

D.2 Empirical Sensitivity

Recall that an arbitrary parameter group indexed by i ∈ [c`] in an arbitrary layer ` ∈ [L], is
denoted by W `

i and I denotes its parameter index set. Moreover, let wj denote some scalar
entry of W `

i for some j ∈ I. Also as before, A`−1(x) denotes the input activation to layer ` and
Z`i (x) = W `

i ∗ A`−1(x) denotes the output pre-activation of parameter group W `
i . Finally, recall

that a(·) ∈ A`i denotes some patch of A`i and that the patch a(·) produces the associated output
scalar z(x), i.e., z(x) = 〈W `

i , a(x)〉 =
∑

k∈I`i
wkak(x), We now proceed with the formal definition of

relative parameter importance and empirically sensitivity, which is defined as the maximum relative
parameter importance over multiple data points.

Definition 1 (Relative parameter importance). For a scalar parameter wj, j ∈ I`i , of parameter
group W `

i in layer `, its relative importance gj(x) is given by

gj(x) = max
a(·)∈A`

i

wj aj(x)∑
k∈I`i

wk ak(x)
,

where A`i denotes the set of patches for parameter group W `
i .
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Definition 2 (Empirical sensitivity). Let S be a set of i.i.d. samples from the validation data set.
Then, the empirical sensitivity sj(x) of a scalar parameter wj, j ∈ I`i , of parameter group W `

i in
layer ` is given by

sj(x) = max
x∈S

gj(x).

We note that, for ease of notation, we do not explicitly enumerate ES over i and ` for parameter
groups and layers, respectively.

To ensure that a small batch of points S suffices for an accurate approximation of parameter
importance, we impose the following mild regularity assumption on the Cumulative Distribution
Function (CDF) of gj(x) similar to the assumption of [6].

Assumption 1 (Regularity assumption). There exist universal constants C,K > 0 such that for all
j ∈ I`i , the CDF of the random variable gj(x) ∈ [0, 1] for x ∼ D, denoted by Fj (·), satisfies

Fj (1/C) ≤ exp (−1/K) .

Traditional distributions such as the Gaussian, Uniform, and Exponential, among others, sup-
ported on the interval [0, 1] satisfy Assumption 1 with sufficiently small values of K and K ′. In
other words, Assumption 1 ensures that there are no outliers of gj(x) with non-negligible probability
that are not within a constant multiplicative factor of most other values of gj(x). Capturing outliers
that are within a constant multiplicative factor, on the other hand, can be captured by considering
an appropriate scaling factor of ES in the ES inequality (see Lemma 5 below). However, we cannot
capture these non-negligible outliers (unless we significantly increase the cardinality of S) when they
are not within a constant multiplicative factor.

We now proceed to state the ES inequality as informally stated in Lemma 5.1 in the main body
of the paper. We note that, intuitively, the ES inequality enables us to quantify ,i.e. upper-bound,
the contribution wjaj(x) coming from an individual weight w.h.p. in terms of the output patch z(x)
and the sensitivity sj of the weight.

Lemma 5 (ES inequality). For δ ∈ (0, 1), the ES sj of the scalar parameter wj, j ∈ I`i , of parameter
group W `

i computed with a set S of i.i.d. data points, |S| = K log ( ρ/δ), satisfies

P
x

(wjaj(x) ≤ Csjz(x)) ≥ 1− δ ∀j ∈ I`i ,

for some input x ∼ D and some fixed input patch a(·) ∈ A`i , where C,K are the universal constants
of Assumption 1 and z(x) =

∑
k∈I`i

wkak(x).

Proof. We consider a fixed weight wj from the parameter group and a fixed input patch a(·). Note
that

wjaj(x)

z(x)
≤ gj(x) (2)

by definition of gj(x) since the relative parameter importance is the maximum over patches for
a specific input x. We now consider the probability that sj(S) = maxx′∈S gj(x

′) is not an upper
bound for gj(x) when appropriately scaled for random draws over S, where we explicitly denote the
dependency of sj(S) on S for the purpose of this proof. By showing this occurs with low probability
we can then conclude that sj is indeed an upper bound for gj(x) most of the time. Specifically,

P
S

(Csj(S) ≤ gj(x)) = P
S

(sj(S) ≤ gj(x)/C)
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≤ P
S

(sj(S) ≤ 1/C) since gj(x) ≤ 1

= P
S

(
max
x′∈S

gj(x
′) ≤ 1/C

)
by definition of sj(S)

=

(
P
x′

(
gj(x

′) ≤ 1/C
))|S|

since S is |S| i.i.d. draws from D

= Fj (1/C)|S| since Fj(·) is the CDF of gj(x′)
≤ exp (−|S|/K) by Assumption 1

=
δ

ρ
since |S| = K log ( ρ/δ) by definition.

Thus, we can conclude that for a fixed weight wj and some input x ∼ D its relative contribution
gj(x) is upper bound by its sensitivity sj . Moreover, the inequality also holds for any weight wj by
the union bound, i.e.,

P
S

(
∃j ∈ I`i |Csj(S) ≤ gj(x)

)
≤
∣∣∣I`i ∣∣∣PS (Csj(S) ≤ gj(x)) by the union bound

≤
∣∣∣I`i ∣∣∣ δρ by the analysis above

≤ ρδ
ρ

since ρ = max
i,`

∣∣∣I`i ∣∣∣
= δ

We thus have with probability at least 1− δ over the construction of sj that

Csj ≥ gj(x) ∀j ∈ I`i

and by (2) that
wjaj(x)

z(x)
≤ gj(x) ≤ Csj ,

which concludes the proof since the above inequality holds for any x ∼ D.

D.3 Error Guarantees for positive weights and activations

Equipped with Lemma 5 we now proceed to establish the relative error guarantees for the three
variants of SiPP. As before, we consider a fixed output patch for a fixed parameter group and we
assume that both input activations and the weights are non-negative.

D.3.1 Error Guarantee for SiPPDet

Recall that SiPPDet prunes weights from a parameter group by keeping only the weights with
largest sensitivity. Let the index set of weights kept be denoted by Idet. Below we state the formal
error guarantee for a fixed output patch of a parameter group when we only keep the weights indexed
by Idet. Note that the below error guarantee holds for any index set Idet that we decide to keep.
Naturally, however, it makes sense to keep the weights with largest sensitivity as this minimizes the
associated relative error.
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Lemma 6 (SiPPDet error bound). For δ ∈ (0, 1), pruning parameter group W `
i by keeping only

the weights indexed by Idet ⊆ I`i generates a pruned parameter group Ŵ `
i such that for a fixed input

patch a(·) ∈ A`i and x ∼ D

P (|ẑdet(x)− z(x)| ≥ εdetz(x)) ≤ δ with εdet = C
∑

j∈I\Idet

sj ∈ (0, 1),

where z(x) = 〈W `
i , a(x)〉 =

∑
j∈I`i

wjaj(x) and ẑdet(x) = 〈Ŵ `
i , a(x)〉 =

∑
j∈Idet wjaj(x) denote the

unpruned and approximate output patch, respectively, associated with the input patch a(·). The
sensitivities {sj}j∈I`i are hereby computed over a set S of K log ( ρ/δ) i.i.d. data points drawn from
D.

Proof. We proceed by considering the absolute difference |z(x)− ẑdet(x)| and note that

|z(x)− ẑdet(x)| =
∣∣∣〈W `

i , a(x)〉 − 〈Ŵ `
i , a(x)〉

∣∣∣
=

∣∣∣∣∣∣
∑
j∈I`i

wjaj(x)−
∑
j∈Idet

wjaj(x)

∣∣∣∣∣∣
=

∑
j∈I`i \Idet

wjaj(x)

Invoking Lemma 5 we know that with probability at least 1− δ each individual weight term in the
above sum is upper bound by its sensitivity, i.e.,

wjaj(x) ≤ Csjz(x) ∀j ∈ I`i .

We now bound the error in terms of sensitivity as

|z(x)− ẑdet(x)| =
∑

j∈I`i \Idet

wjaj(x)

≤
∑

j∈I`i \Idet

Csjz(x) using the above inequality

= εdetz(x) by definition of εdet.

We conclude by mentioning that above error bound holds with probability at least 1− δ since the
associated ES inequalities hold with probability at least 1− δ.

D.3.2 Error Guarantee for SiPPRand

As before, we consider a fixed parameter group W `
i , which has been assigned a budget of m`

i unique
weights to be kept. Recall that SiPPRand is a sampling procedure that proceeds as follows:
1. Assign probabilities qj = sj/

∑
k∈I`

i
sk for all j ∈ I`i .

2. Compute the expected number of samples, N , to obtain m`
i unique weights from the sampling

procedure.
3. Sample weights N times with replacement from W `

i according to qj .
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4. Reweigh the weights, ŵj , to obtain the approximate weights such that ŵj =
nj

Nqj
wj , where nj

denotes the number of times wj was sampled.
We note that if a weight has not been sampled, i.e. nj = 0, we can drop it since the resulting weight
is 0. We now consider the resulting error bound when sampling N times with replacement.

Lemma 7 (SiPPRand error bound). For δ ∈ (0, 1), pruning parameter group W `
i by sampling

weights N = N(m`
i) times with replacement, such that weight wj is sampled with probability qj =

sj/
∑

k∈I`
i
sk, generates a pruned parameter group Ŵ `

i such that for a fixed input patch a(·) ∈ A`i and
x ∼ D

P (|ẑrand(x)− z(x)| ≥ εrandz(x)) ≤ δ and εrand =


√√√√ S̃

N

(
S̃

N
+ 6

)
+
S̃

N

 ∈ (0, 1),

where ẑrand(x) = 〈Ŵ `
i , a(x)〉 and z(x) = 〈W `

i , a(x)〉 are with respect to patch map a(·) as before,
S̃ = SC

3 log(4/δ), and S =
∑

j∈I`i
sj. The sensitivities {sj}j∈I`i are hereby computed over a set S of

K log (2 ρ/δ) i.i.d. data points drawn from D.

Proof. Our proof closely follows the proof of Lemma 1 of [6]. The sampling procedure of sampling N
with replacement is equivalent to sequentially constructing a multiset consisting of N samples from
I`i where each j ∈ I`i is sampled with probability qj . Now, let C = {c1, . . . , cN} be that multiset of
weight indices I`i used to construct Ŵ `

i . Let a(·) ∈ A`i be arbitrary and fixed, let x ∼ D be an i.i.d.
sample from D, and let

ẑrand(x) = 〈Ŵ `
i , a(x)〉 =

∑
j∈C

wj
Nqj

aj(x)

be the approximate intermediate value corresponding to the sparsified tensor Ŵ `
i and let

z(x) =
∑
j∈I`i

wjaj(x)

as before. Define N random variables Tc1 , . . . , TcN such that for all j ∈ C

Tj =
wjaj(x)

Nqj
=
Swjaj(x)

Nsj
. (3)

For any j ∈ C, we have for the expectation of Tj :

E [Tj ] =
∑
k∈I`i

wkak(x)

Nqk
qk =

z(x)

N
.

Let T =
∑

j∈C Tj = ẑrand(x) denote our approximation and note that by linearity of expectation,

E [T ] =
∑
j∈C

E [Tj ] = z(x).

Thus, ẑrand(x) = T is an unbiased estimator of z(x) for any x ∼ D.
For the remainder of the proof we will assume that z(x) > 0, since otherwise, z(x) = 0 if and

only if Tj = 0 for all j ∈ C almost surely, in which case the lemma follows trivially. We now proceed
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with the case where z(x) > 0 and invoke Lemma 5 (ES inequality) with S consisting of K log (2 ρ/δ)
i.i.d. data points, which implies that

wjaj(x) ≤ Csjz(x) ∀j ∈ I`i with probability at least 1− δ

2
. (4)

Consequently, we can bound the variance of each Tj , j ∈ C with probability at least 1− δ/2 as
follows

Var(Tj) ≤ E [T 2
j ]

=
∑
k∈I`i

(wkak(x))2

(Nqk)2
qk

=
S

N2

∑
k∈I`i

wkak(x)

sj
wkak(x)

≤ S

N2
Cz(x)

∑
k∈I`i

wkak(x) by the ES inequality as stated in (4)

=
SCz(x)2

N2
.

Since T is a sum of independent random variables, we obtain

Var(T ) = N Var(Tj) ≤
SCz(x)2

N
(5)

for the overall variance.
Now, for each j ∈ C let

T̃j = Tj − E [Tj ] = Tj − z(x),

and let T̃ =
∑

j∈C T̃j . Note that by the definition of Tj and the ES inequality (4) we have that

Tj =
Swjaj(x)

Nsj
≤ SCz(x)

N

and consequently for the centered random variable T̃j that∣∣∣T̃j∣∣∣ =

∣∣∣∣Tj − z(x)

N

∣∣∣∣ ≤ SCz(x)

N
=: M, (6)

which holds with probability at least 1− δ/2 for any x ∼ D. Also note that Var(T̃ ) = Var(T ).
Now conditioned on the ES inequality (4) holding, applying Bernstein’s inequality to both T̃

and −T̃ we have by symmetry and the union bound,

P
(∣∣∣T̃ ∣∣∣ ≥ εrandz(x)

)
= P (|T − z(x)| ≥ εrandz(x))

≤ 2 exp

(
−

ε2randz(x)2

2Var(T ) + 2εrandz(x)M
3

)
by Bernstein’s inequality
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≤ 2 exp

(
−

ε2randz(x)2

2SCz(x)2

N + 2SCεrandz(x)2

3N

)
by (5) and (6)

= 2 exp

(
−

3ε2randN

SC(6 + 2εrand)

)
≤ δ

2
by our choice of εrand

Note that the (undesired) event |T − z(x)| ≥ εrandz(x) = |ẑrand(x)− z(x)| ≥ εrandz(x) occurs with
probability at most δ/2, which was conditioned on the ES inequality holding, which occurs with
probability at least 1− δ/2. Thus by the union bound, the overall failure probability is at most δ,
which concludes the proof.

D.3.3 Error Guarantee for SiPPHybrid

We note that the error guarantee for SiPPHybrid follow straightforward from the error guarantees
for SiPPDet and SiPPRand as stated in Lemma 6 and 7, respectively, since SiPPHybrid chooses
the strategy among those two for which the associated error guarantee is lower. We can therefore
state the error guarantee as follows.

Lemma 8 (SiPPHybrid error bound). In the context of Lemmas 6 and 7, for δ ∈ (0, 1) SiPPHy-
brid generates a pruned parameter group Ŵ `

i such that for a fixed input patch a(·) ∈ A`i , output
patch z(x), and x ∼ D

P (|ẑhybrid(x)− z(x)| ≥ εhybridz(x)) ≤ δ with εhybrid = min {εdet, εrand} ∈ (0, 1),

where zhybrid(x) is the associated approximate output patch.

D.4 Generalization to all weights and activations

In this section, we generalize our analysis from the previous section to include all weights and
activations. We also adapt the resulting error guarantees to simultaneously hold for all patches of all
parameter groups within a layer instead of a fixed patch.

We handle the general case by splitting both the input activations and the weights into their
respective positive and negative parts representing the four quadrants, i.e.,

z++(x) = 〈W `,+
i , a(x)+〉 z+−(x) = 〈W `,+

i , a(x)−〉

z−+(x) = 〈W `,−
i , a(x)+〉 z−−(x) = 〈W `,+

i , a(x)−〉,

where

W `
i = W `,+

i −W `,−
i , W `,+

i , W `,−
i ≥ 0,

a(x) = a(x)+ − a(x)−, a(x)+, a(x)− ≥ 0.

First, consider negative activations for a non-negative parameter group. Specifically, when
computing sensitivities over some set S we split the input activations into their respective positive
and negative part, and take an additional maximum over both parts. Henceforth the ES inequality 5
can be applied to the positive and negative part of a(x) at the same time. Similarly, we can split
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the parameter group into its positive and negative part when computing sensitivity such that the ES
inequality 5 holds for both parts of the parameter group as well.

More formally, the generalized relative parameter importance gj(x) for some parameter wj of
parameter group W `

i can be defined as follows.

Definition 3 (Generalized relative parameter importance). For a scalar parameter wj = w+
j − w

−
j ,

w+
j , w

−
j ≥ 0, j ∈ I`i , of parameter group W `

i in layer `, its generalized relative importance gj(x) is
given by the maximum over its quadrant-wise relative importances, i.e.,

gj(x) = max{g++
j (x), g+−j (x), g−+j (x), g−−j (x)},

where

g++
j (x) = max

a(·)∈A`
i

w+
j a

+
j (x)∑

k∈I`i
w+
k a

+
k (x)

, and so forth,

and where A`i denotes the set of patches for parameter group W `
i and A`i 3 a(·) = a+(·) − a−(·),

a+(·), a−(·) ≥ 0.

The definition of generalized ES does not change compared to Definition 2 and henceforth we do
not re-state it explicitly. We proceed by re-deriving the ES inequality for the generalized parameter
importance and any patch of the parameter group.

Lemma 9 (Generalized ES inequality). For δ ∈ (0, 1), the ES sj of the scalar parameter wj, j ∈ I`i ,
of parameter group W `

i computed with a set S of i.i.d. data points, |S| = K log ( ρ/δ), satisfies for
each quadrant

P
x

(
w+
j a

+
j (x) ≤ Csjz++(x)

)
≥ 1− δ ∀j ∈ I`i , and so forth,

for some input x ∼ D and some fixed input patch a(·) ∈ A`i , where C,K are the universal constants
of Assumption 1 and z++(x) =

∑
k∈I`i

w+
k a

+
k (x), and so forth, denotes the quadrant-wise output

patch.

Proof. The proof follows the steps of Lemma 5 with the exception of Equation (2). To adapt it to
the general case note that

w+
j a

+
j (x)

z++(x)
≤ g++

j (x) ≤ gj(x),

and so forth, for each quadrant.

Consequently, we can re-derive Lemmas 6-8 such that they hold for each quadrant of a fixed patch.
The derivations are analogues to the derivations in Section D.3. Finally, we adapt our guarantees
to hold quadrant-wise for all patches of all parameter groups and layers simultaneously. We note
that we can achieve this by appropriately adjusting the failure probability for Lemmas 6-8 such
that, by the union bound, the overall failure probability is bounded δ. Specifically, we can invoke
Lemmas 6-8 with δ′ = δ/4η such that

S̃ =
SC

3
log(16η/δ) and |S| = K log (8η ρ/δ) ,

where η denotes the number of total patches across all layers and parameter groups. The rest of
the Lemmas remains unchanged. Therefore, we have that for all quadrant-wise patches our error
guarantees hold. We utilize our patch-wise bounds as outlined in Section C to optimally allocate our
budget across layers to minimize the relative error within each quadrant of the parameter groups
and prune each parameter group according to the budget and the desired variant of SiPP.
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D.5 Network compression bounds

Up to this point we have established patch-wise and quadrant-wise error guarantees for the network,
which suffices to prune the network according to Algorithm 2. However, we can also leverage our
theoretical guarantees to establish network-wide compression bounds of the form

Pθ̂,x
(∥∥fθ̂(x)− fθ(x)

∥∥ ≤ ε ‖fθ(x)‖
)
≥ 1− δ,

for given ε, δ ∈ (0, 1) as described in Problem 1.
We will restrict ourselves to analyzing the general case for SiPPDet but we note that each step

can be applied analogously for SiPPRand and SiPPHybrid. We begin by generalizing Lemma 6
to establish norm-based bounds for each quadrant of the pre-activation. To this end, let

Z`++(x) = W `+ ∗A`−1,+(x), Ẑ`++(x) = Ŵ `+ ∗A`−1,+(x), and so forth

denote the unpruned and approximate pre-activation quadrants, respectively. Moreover, let S`i
denote the sum of ES for parameter group W `

i as before and let S`i (N
`
i ) denote the sum over the N `

i

largest ES for parameter group W `
i .

Corollary 10. For δ ∈ (0, 1), pruning layer ` according to SiPPDet generates a pruned weight
tensor Ŵ ` such that for a fixed quadrant and x ∼ D

P
(∥∥∥Ẑ`++(x)− Ẑ`++(x)

∥∥∥ ≥ ε` ∥∥∥Z`++(x)
∥∥∥) ≤ δ with ε` = max

i∈c`
C
(
S`i − S`i (N `

i )
)
,

where N `
i denotes the number of samples allocated to parameter group W `

i . The ESs are hereby
computed over a set S of K log

(
η` ρ/δ

)
i.i.d. data points drawn from D.

Proof. Let Z`++
i (x) denote the pre-activation quadrant associated with parameter group W `

i . Invok-
ing Lemma 6 with a set S of K log

(
η` ρ/δ

)
i.i.d. data points drawn from D and N `

i samples for the
respective parameter group implies that any associated patch, i.e. entry, of Z`++

i (x) is approximated
with relative error at most ε`i = C

(
S`i − S`i (N `

i )
)
with probability at least 1− δ/η`. Consequently,∥∥∥Z`++

i (x)
∥∥∥ is also preserved with relative error ε`i . Thus we have w.h.p. that∥∥∥Z`++(x)− Ẑ`++(x)

∥∥∥2 =
∑
i∈[c`]

∥∥∥Z`++
i (x)− Ẑ`++

i (x)
∥∥∥2

≤
∑
i∈[c`]

(ε`i)
2
∥∥∥Z`++

i (x)
∥∥∥2

≤ (ε`)2
∑
i∈[c`]

∥∥∥Z`++
i (x)

∥∥∥2 by definition of ε`

= (ε`)2
∥∥∥Z`++(x)

∥∥∥2
Taking a union bound over all η` patches in the pre-activation Z`(x) concludes the proof.

We note that Corollary 10 is stated for Z`++(x) but naturally extends to the other quadrants as
well.

As a next step, we establish guarantees to approximate Z`(x) by leveraging the guarantees for
each quadrant. To this end, note that Z`(x) = Z`++(x)− Z`+−(x)− Z`−+(x) + Z`−−(x). Further,
let ∆` denote the “sign complexity“ of approximating the overall pre-activation, which is defined as
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Definition 4 (Sign complexity). For layer `, its sign complexity ∆` is given by

∆` = max
x∈S

∥∥Z`++(x)
∥∥+

∥∥Z`+−(x)
∥∥+

∥∥Z`−+(x)
∥∥+

∥∥Z`−−(x)
∥∥

‖Z`(x)‖

where S denotes a set of i.i.d. data points drawn from D.

Intuitively, ∆` captures the additional complexity of approximating the layer when considering
the actual signs of the quadrants as opposed to treating them separately. We can now state the
error guarantees for SiPP in context of Corollary 10 for the overall pre-activation.

Lemma 11 (Layer error bound). For given δ ∈ (0, 1) and sample budget N `
i for each parameter

group, invoking SiPPDet to prune W ` generates a pruned weight tensor Ŵ ` such that for x ∼ D

P
(∥∥∥Ẑ`(x)− Ẑ`(x)

∥∥∥ ≥ ε`∆`
∥∥∥Z`(x)

∥∥∥) ≤ δ with ε` = max
i∈c`

C
(
S`i − S`i (N `

i )
)
,

where N `
i denotes the number of samples allocated to parameter group W `

i . The ESs are hereby
computed over a set S of K log

(
5η` ρ/δ

)
i.i.d. data points drawn from D.

Proof. Consider invoking Corollary 10 with a set S of K log
(
5η` ρ/δ

)
i.i.d. data points drawn from

D. Then for each quadrant we have w.h.p. that∥∥∥Ẑ`++(x)− Ẑ`++(x)
∥∥∥ ≤ ε` ∥∥∥Ẑ`++(x)

∥∥∥ , and so forth,

for an appropriate notion of high probability specified subsequently. Note that

Z`(x) = Z`++(x)− Z`+−(x)− Z`−+(x) + Z`−−(x)

and so w.h.p. we have that∥∥∥Ẑ`(x)− Ẑ`(x)
∥∥∥ =

∥∥∥Ẑ`++(x)− Ẑ`++(x)− Ẑ`+−(x) + Ẑ`+−(x)

− Ẑ`−+(x) + Ẑ`−+(x) + Ẑ`−−(x)− Ẑ`−−(x)
∥∥∥

≤
∥∥∥Ẑ`++(x)− Ẑ`++(x)

∥∥∥+
∥∥∥Ẑ`+−(x)− Ẑ`+−(x)

∥∥∥
+
∥∥∥Ẑ`−+(x)− Ẑ`−+(x)

∥∥∥+
∥∥∥Ẑ`−−(x)− Ẑ`−−(x)

∥∥∥
≤ ε`

(∥∥∥Ẑ`++(x)
∥∥∥+

∥∥∥Ẑ`+−(x)
∥∥∥+

∥∥∥Ẑ`−+(x)
∥∥∥+

∥∥∥Ẑ`−−(x)
∥∥∥)

= ε`
∥∥Z`++(x)

∥∥+
∥∥Z`+−(x)

∥∥+
∥∥Z`−+(x)

∥∥+
∥∥Z`−−(x)

∥∥
‖Z`(x)‖

∥∥∥Z`(x)
∥∥∥

≤ ε`∆`
∥∥∥Z`(x)

∥∥∥ ,
where the last step followed from our definition of ∆`. By imposing a regularity assumption on ∆`

similar to that of ES, we can show that ∆` is an upper bound for any x ∼ D w.h.p. following the
proof of the ES inequality (Lemma 5).

To specify the appropriate notion of high probability, we consider the individual failure cases
and apply the union bound. In particular, for our choice of for the size of S, we have that for a
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particular quadrant the approximation fails with probability at most δ/5. Thus across all quadrants
we have a overall failure probability of at most 4δ/5. Finally, we consider the event that ∆` does not
upper bound the hardness for some input x ∼ D, which occurs with probability at most δ/5 by our
choice for the size of S. Henceforth, our overall failure probability is at most δ, again by the union
bound, which concludes the proof.

We now consider the effect of pruning multiple layers at the same time and analyze the final
resulting error in the output. To this end, consider the activation φ`(·) for which we assume the
following.

Assumption 2. For layer ` ∈ [L], the activation function, denoted by φ`(·), is Lipschitz continuous
with Lipschitz constant K`.

Without loss of generality, we will further assume that the activation function is 1-Lipschitz,
which is the case, e.g., for ReLU and Softmax, to avoid introducing additional notation. We now
state a lemma pertaining to the error resulting from pruning multiple layers simultaneously, which
will provide the basis for establishing error bounds across the entire network.

Lemma 12 (Error propagation). Let Â`(x), ` ≤ L, denote the activation of layer ` when we have
pruned layers 1, . . . , ` according to Lemma 11. Then the overall approximation in layer ` is bounded
by ∥∥∥Â`(x)−A`(x)

∥∥∥ ≤ ∑̀
k=1

( ∏̀
k′=k+1

∥∥∥W k′
∥∥∥
F

)
εk∆k

∥∥∥Zk(x)
∥∥∥

with probability at least 1− δ. The ESs are hereby computed over a set S of K log
(

5
∑

k∈[`] η
k ρ/δ

)
i.i.d. data points drawn from D.

Proof. We prove the above statement by induction. For layer ` = 1, we have that∥∥∥Â1(x)−A1(x)
∥∥∥ =

∥∥∥φ1(Ŵ 1 ∗ Â0(x))− φ1(Ŵ 1 ∗A0(x))
∥∥∥

≤
∥∥∥Ŵ 1 ∗ Â0(x)− Ŵ 1 ∗A0(x)

∥∥∥ since the φ1(·) is 1-Lipschitz

=
∥∥∥Ŵ 1 ∗A0(x)− Ŵ 1 ∗A0(x)

∥∥∥ since Â0(x) = A0(x) = x

=
∥∥∥Ẑ1(x)− Z1(x)

∥∥∥ by definition of Ẑ1(x) and Z1(x)

≤ ε1∆1
∥∥Z1(x)

∥∥ by Lemma 11,

which proves that the base case holds.
We now proceed with the inductive step. Assuming the inequality is true for layer `, we have for

layer `+ 1 that∥∥∥Â`+1(x)−A`+1(x)
∥∥∥ =

∥∥∥φ`+1(Ŵ `+1 ∗ Â`(x))− φ`+1(W `+1 ∗A`(x))
∥∥∥

≤
∥∥∥Ŵ `+1 ∗ Â`(x)−W `+1 ∗A`(x)

∥∥∥ since φ`+1(·) is 1-Lipschitz

=
∥∥∥Ŵ `+1 ∗ Â`(x)− Ŵ `+1 ∗A`(x) + Ŵ `+1 ∗A`(x)−W `+1 ∗A`(x)

∥∥∥
≤
∥∥∥Ŵ `+1 ∗ (Â`(x)−A`(x))

∥∥∥+
∥∥∥(Ŵ `+1 −W `+1) ∗A`(x)

∥∥∥
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Note that we can bound the first term by∥∥∥Ŵ `+1 ∗ (Â`(x)−A`(x))
∥∥∥ ≤ ∥∥∥Ŵ `+1

∥∥∥
op

∥∥∥Â`(x)−A`(x)
∥∥∥

≤
∥∥∥Ŵ `+1

∥∥∥
F

∥∥∥Â`(x)−A`(x)
∥∥∥

≤
∥∥∥W `+1

∥∥∥
F

∥∥∥Â`(x)−A`(x)
∥∥∥ since Ŵ `+1 is a subset of W `+1

where ‖·‖op and ‖·‖F denote the `2-induced operator norm and Frobenius norm, respectively. The
second term is bounded by Lemma 11, i.e.,∥∥∥(Ŵ `+1 −W `+1) ∗A`(x)

∥∥∥ =
∥∥∥Ẑ`+1(x)− Z`+1(x)

∥∥∥ ≤ ε`+1∆`+1
∥∥∥Z`+1(x)

∥∥∥ .
Putting both terms back together we have that∥∥∥Â`+1(x)−A`+1(x)

∥∥∥
≤
∥∥∥W `+1

∥∥∥
F

∥∥∥Â`(x)−A`(x)
∥∥∥+ ε`+1∆`+1

∥∥∥Z`+1(x)
∥∥∥

≤
∥∥∥W `+1

∥∥∥
F

(∑̀
k=1

( ∏̀
k′=k+1

∥∥∥W k′
∥∥∥
F

)
εk∆k

∥∥∥Zk(x)
∥∥∥)+ ε`+1∆`+1

∥∥∥Z`+1(x)
∥∥∥

=
∑̀
k=1

(
`+1∏

k′=k+1

∥∥∥W k′
∥∥∥
F

)
εk∆k

∥∥∥Zk(x)
∥∥∥+ ε`+1∆`+1

∥∥∥Z`+1(x)
∥∥∥

=
`+1∑
k=1

(
`+1∏

k′=k+1

∥∥∥W k′
∥∥∥
F

)
εk∆k

∥∥∥Zk(x)
∥∥∥ ,

where the second inequality followed from our induction hypothesis. Finally, we note that, by our
choice for the size of S and the union bound, the overall failure probability is bounded above by δ.

From the analysis the term
∏`
k′=k+1

∥∥∥W k′
∥∥∥
F
arises, which is an upper bound for the Lipschitz

constant of the network starting from layer k + 1. Moreover, the coefficient of the propagated error
is closely related to the condition number between layer ` and the network’s output. To this end,
consider the following upper bound on the condition number.

Definition 5 (Layer condition number). For layer `, the condition number from the pre-activation
of layer ` to the output of the network (activation of layer L) is given by

κ` = max
x∈S

(
L∏

k=`+1

∥∥∥W `
∥∥∥
F

) ∥∥Z`(x)
∥∥

‖AL(x)‖
,

where S denotes a set of i.i.d. data points drawn from D.

To see that κ` is indeed an upper bound on the condition number we note that the condition
number is defined as the maximum relative change in the output over the maximum relative change
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in the input, i.e.,

max
x,x′∈S

‖AL(x)−AL(x′)‖
‖AL(x)‖

‖Z`(x)−Z`(x′)‖
‖Z`(x)‖

= max
x,x′∈S

∥∥AL(x)−AL(x′)
∥∥

‖Z`(x)− Z`(x′)‖

∥∥Z`(x)
∥∥

‖AL(x)‖
.

The first term can be upper bounded as∥∥AL(x)−AL(x′)
∥∥

‖Z`(x)− Z`(x′)‖
≤
∥∥ZL(x)− ZL(x′)

∥∥
‖Z`(x)− Z`(x′)‖

=

∥∥WL ∗ (AL−1(x)−AL−1(x′))
∥∥

‖Z`(x)− Z`(x′)‖

≤
∥∥WL

∥∥
F

∥∥(AL−1(x)−AL−1(x′))
∥∥

‖Z`(x)− Z`(x′)‖
≤ . . .

≤
L∏

k=`+1

∥∥∥W k
∥∥∥
F

∥∥A`(x)−A`(x′)
∥∥

‖Z`(x)− Z`(x′)‖

≤
L∏

k=`+1

∥∥∥W k
∥∥∥
F
,

which plugged back in above yields the definition of the layer condition number κ`.
Equipped with Lemma 12 and Definition 5 we are now ready to state our main compression

bound over the entire network.

Theorem 13 (Network compression bound). For given δ ∈ (0, 1), a set of parameters θ =
(W 1, . . . ,WL), and a sample budget B SiPP (Algorithm 2) generates a set of compressed parameters
θ̂ = (Ŵ 1, . . . , ŴL) such that ‖θ̂‖0 ≤ B, ‖W `

i ‖0 ≤ N `
i , ∀i ∈ [c`], ` ∈ [L],

P
θ̂,x

(∥∥fθ̂(x)− fθ(x)
∥∥ ≤ ε ‖fθ(x)‖

)
≥ 1− δ and ε = C

L∑
`=1

κ`∆` max
i∈[c`]

(
S`i − S`i (N `

i )
)
,

where S`i is the sum of sensitivities for parameter group W `
i computed over a set S of K log (6η ρ/δ)

i.i.d. data points.

Proof. Invoking Lemma 12 for ` = L implies with high probability that

∥∥∥ÂL(x)−AL(x)
∥∥∥ ≤ L∑

`=1

(
L∏

k=`+1

∥∥∥W k
∥∥∥
F

)
ε`∆`

∥∥∥Z`(x)
∥∥∥

=

L∑
`=1

(
L∏

k=`+1

∥∥∥W k
∥∥∥
F

) ∥∥Z`(x)
∥∥

‖AL(x)‖
∆`ε`

∥∥AL(x)
∥∥

≤
L∑
`=1

κ`∆`ε`
∥∥AL(x)

∥∥
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= ε
∥∥AL(x)

∥∥ ,
where the last inequality followed from our definition of the layer condition number κ`. Moreover,
following the analysis of Lemma 5 we can establish that κ` is an upper bound for any x ∼ D with
high probability. Finally, we note that the overall failure probability is bounded by δ by our choice
for the size of S and by a union bound over the failure probabilities of Lemma 12 and of κ` not
being an upper bound for some x ∼ D.

E Experimental details

E.1 Setup and Hyperparameters

All hyperparameters for training, retraining, and pruning are outlined in Table S1. For training
CIFAR10 networks we used the training hyperparameters outlined in the respective original papers,
i.e., as described by [18], [41], [19], and [52] for ResNets, VGGs, DenseNets, and WideResNets,
respectively. For retraining, we did not change the hyperparameters and repurposed the training
hyperparameters. We added a warmup period in the beginning where we linearly scale up the
learning rate from 0 to the nominal learning rate. Iterative pruning is conducted by repeatedly
removing the same ratio of parameters (denoted by α in Table S1). The prune parameter δ describes
the failure probability of SiPP. We note no other additional hyperparameters are required to run
SiPP.

For ImageNet, we show experimental results for a ResNet18 and a ResNet101. As in the case
of the CIFAR10 networks, we re-purpose the same training hyperparameters as indicated in the
original paper. We also use the same hyperparameters for retraining. The hyperparameters are
summarized in Table S2.

VGG16 Resnet20/56/110 DenseNet22 WRN-16-8

Train

test error 7.19 8.6/7.19/6.43 10.10 4.81
loss cross-entropy cross-entropy cross-entropy cross-entropy

optimizer SGD SGD SGD SGD
epochs 300 182 300 200

warm-up 5 5 5 5
batch size 256 128 64 128

LR 0.05 0.1 0.1 0.1
LR decay 0.5@{30, . . . } 0.1@{91, 136} 0.1@{150, 225} 0.2@{60, . . . }

momentum 0.9 0.9 0.9 0.9
Nesterov No No Yes Yes

weight decay 5.0e-4 1.0e-4 1.0e-4 5.0e-4

Prune δ 1.0e-16 1.0e-16 1.0e-16 1.0e-16
α 0.85 0.85 0.85 0.85

Table S1: We report the hyperparameters used during training, pruning, and retraining for various convolu-
tional architectures on CIFAR-10. LR hereby denotes the learning rate and LR decay denotes the learning rate
decay that we deploy after a certain number of epochs. During retraining we used the same hyperparameters.
{30, . . .} denotes that the learning rate is decayed every 30 epochs.

33



ResNet18/101

Train

top-1 test error 30.26/22.63
top-5 test error 10.93/6.45

loss cross-entropy
optimizer SGD

epochs 90
warm-up 5
batch size 256

LR 0.1
LR decay 0.1@{30, 60, 80}

momentum 0.9
Nesterov No

weight decay 1.0e-4

Prune δ 1.0e-16
α 0.90

Table S2: We report the hyperparameters used during training, pruning, and retraining for various convolu-
tional architectures on ImageNet. LR hereby denotes the learning rate and LR decay denotes the learning
rate decay that we deploy after a certain number of epochs.

E.2 Iterative prune+retrain results for CIFAR10

In Figure S2 we show the results and comparisons when using iterative prune+retrain as outlined in
Section 6. We highlight that SiPP performs en par with WT while SNIP performs significantly
worse than WT.

We also compare the performance of the three variations of our algorithm, see Figure S1. Note
that the performance for all of them is very similar, henceforth we choose SiPPDet for its simplicity
when comparing to other methods for this expensive iterative prune+retrain pipeline.

E.3 Random-init+prune+train results for CIFAR10

The results for this pipeline are shown in Figure S3. We note that WT performs significantly worse
in this case whereas SNIP and SiPP clearly outperform WT. Overall, we find that sometimes SiPP
can even outperform SNIP. More importantly, however, these experiments highlight the versatile
nature of SiPP, i.e., it performs consistently well across multiple prune pipelines hence serving as a
reliable and useful plug-and-play solution within a bigger pipeline. We conjecture that this is due to
the provable nature of SiPP.

E.4 Iterative prune+retrain results for ImageNet

Finally, we show results for a ResNet18 and ResNet101 trained on ImageNet, see Figure S4. From
the results, we can conclude that SiPP scales well to larger architectures and datasets, such as
ImageNet, and can perform en par with existing state-of-the-art methods.
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Figure S1: The delta in test accuracy to the uncompressed network for the generated pruned models trained
on CIFAR10 for various target prune ratios. The networks were pruned using the iterative prune+retrain
pipeline.
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Figure S2: The delta in test accuracy to the uncompressed network for the generated pruned models trained
on CIFAR10 for various target prune ratios. The networks were pruned using the iterative prune+retrain
pipeline.

36



80.0% 85.0% 90.0% 95.0%
Pruned Parameters

60.0%

70.0%

80.0%

90.0%

Te
st

 A
cc

ur
ac

y

resnet20, CIFAR10

SiPPDet
SiPPRand
SiPPHybrid

WT
SNIP

(a) Resnet20

20.0% 40.0% 60.0% 80.0% 100.0%
Pruned Parameters

60.0%

70.0%

80.0%

90.0%

Te
st

 A
cc

ur
ac

y

resnet56, CIFAR10

SiPPDet
SiPPRand
SiPPHybrid

WT
SNIP

(b) Resnet56

50.0% 60.0% 70.0% 80.0% 90.0%
Pruned Parameters

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

Te
st

 A
cc

ur
ac

y

resnet110, CIFAR10

SiPPDet
SiPPRand
SiPPHybrid

WT
SNIP

(c) Resnet110

50.0% 60.0% 70.0% 80.0% 90.0%
Pruned Parameters

20.0%

40.0%

60.0%

80.0%

100.0%

Te
st

 A
cc

ur
ac

y

vgg16_bn, CIFAR10

SiPPDet
SiPPRand
SiPPHybrid

WT
SNIP

(d) VGG16

50.0% 60.0% 70.0% 80.0% 90.0%
Pruned Parameters

20.0%

40.0%

60.0%

80.0%

Te
st

 A
cc

ur
ac

y

densenet22, CIFAR10

SiPPDet
SiPPRand
SiPPHybrid

WT
SNIP

(e) DenseNet22

50.0% 60.0% 70.0% 80.0% 90.0%
Pruned Parameters

20.0%

40.0%

60.0%

80.0%

100.0%

Te
st

 A
cc

ur
ac

y

wrn16_8, CIFAR10

SiPPDet
SiPPRand
SiPPHybrid

WT
SNIP

(f) WRN16-8

Figure S3: The delta in test accuracy to the uncompressed network for the generated pruned models trained on
CIFAR10 for various target prune ratios. The networks were pruned using the random-init+ prune+train
pipeline.

37



20.0% 40.0% 60.0% 80.0%
Pruned Parameters

-3.0%

-2.0%

-1.0%

0.0%

+1.0%

De
lta

 T
es

t A
cc

ur
ac

y

resnet18, ImageNet

SiPPDet WT

(a) ResNet18, Top 1

20.0% 40.0% 60.0% 80.0%
Pruned Parameters

0.0%

+0.2%

+0.5%

+0.8%

+1.0%

De
lta

 T
op

 5
 T

es
t A

cc
ur

ac
y resnet18, ImageNet

SiPP WT

(b) ResNet18, Top 5

10.0% 20.0% 30.0% 40.0% 50.0% 60.0% 70.0%
Pruned Parameters

-4.0%

-2.0%

0.0%

+2.0%

De
lta

 T
es

t A
cc

ur
ac

y

resnet101, ImageNet
SiPPDet WT

(c) ResNet101, Top 1

20.0% 40.0% 60.0%
Pruned Parameters

-1.0%

-0.5%

0.0%

+0.5%

+1.0%

De
lta

 T
op

 5
 T

es
t A

cc
ur

ac
y resnet101, ImageNet

SiPPDet WT

(d) ResNet101, Top 5

Figure S4: The accuracy of the generated pruned ResNet18 and ResNet101 models trained on ImageNet
for the evaluated pruning schemes for various target prune ratios.
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