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Learning Robust Control Policies for End-to-End
Autonomous Driving From Data-Driven Simulation

Alexander Amini , Igor Gilitschenski , Jacob Phillips, Julia Moseyko,
Rohan Banerjee , Sertac Karaman , and Daniela Rus

Abstract—In this work, we present a data-driven simulation
and training engine capable of learning end-to-end autonomous
vehicle control policies using only sparse rewards. By leveraging
real, human-collected trajectories through an environment, we
render novel training data that allows virtual agents to drive along
a continuum of new local trajectories consistent with the road
appearance and semantics, each with a different view of the scene.
We demonstrate the ability of policies learned within our simulator
to generalize to and navigate in previously unseen real-world roads,
without access to any human control labels during training. Our
results validate the learned policy onboard a full-scale autonomous
vehicle, including in previously un-encountered scenarios, such as
new roads and novel, complex, near-crash situations. Our methods
are scalable, leverage reinforcement learning, and apply broadly
to situations requiring effective perception and robust operation in
the physical world.

Index Terms—Deep learning in robotics and automation,
autonomous agents, real world reinforcement learning, data-driven
simulation.

I. INTRODUCTION

END-TO-END (i.e., perception-to-control) trained neu-
ral networks for autonomous vehicles have shown great

promise for lane stable driving [1]–[3]. However, they lack
methods to learn robust models at scale and require vast amounts
of training data that are time consuming and expensive to collect.
Learned end-to-end driving policies and modular perception
components in a driving pipeline require capturing training
data from all necessary edge cases, such as recovery from
off-orientation positions or even near collisions. This is not
only prohibitively expensive, but also potentially dangerous [4].
Training and evaluating robotic controllers in simulation [5]–[7]
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Fig. 1. Training and deployment of policies from data-driven simulation:
From a single human collected trajectory our data-driven simulator (VISTA)
synthesizes a space of new possible trajectories for learning virtual agent control
policies (A). Preserving photorealism of the real world allows the virtual agent
to move beyond imitation learning and instead explore the space using rein-
forcement learning with only sparse rewards. Learned policies not only transfer
directly to the real world (B), but also outperform state-of-the-art end-to-end
methods trained using imitation learning.

has emerged as a potential solution to the need for more data
and increased robustness to novel situations, while also avoiding
the time, cost, and safety issues of current methods. However,
transferring policies learned in simulation into the real-world
still remains an open research challenge. In this letter, we
present an end-to-end simulation and training engine capable of
training real-world reinforcement learning (RL) agents entirely
in simulation, without any prior knowledge of human driving
or post-training fine-tuning. We demonstrate trained models
can then be deployed directly in the real world, on roads and
environments not encountered in training. Our engine, termed
VISTA: Virtual Image Synthesis and Transformation for Au-
tonomy, synthesizes a continuum of driving trajectories that
are photorealistic and semantically faithful to their respective
real world driving conditions (Fig. 1), from a small dataset of
human collected driving trajectories. VISTA allows a virtual
agent to not only observe a stream of sensory data from stable
driving (i.e., human collected driving data), but also from a
simulated band of new observations from off-orientations on
the road. Given visual observations of the environment (i.e.,
camera images), our system learns a lane-stable control policy
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over a wide variety of different road and environment types, as
opposed to current end-to-end systems [2], [3], [8], [9] which
only imitate human behavior. This is a major advancement as
there does not currently exist a scalable method for training
autonomous vehicle control policies that go beyond imitation
learning and can generalize to and navigate in previously unseen
road and complex, near-crash situations.

By synthesizing training data for a broad range of vehicle
positions and orientations from real driving data, the engine is
capable of generating a continuum of novel trajectories con-
sistent with that road and learning policies that transfer to
other roads. This variety ensures agent policies learned in our
simulator benefit from autonomous exploration of the feasible
driving space, including scenarios in which the agent can recover
from near-crash off-orientation positions. Such positions are
a common edge-case in autonomous driving and are difficult
and dangerous to collect training data for in the real-world. We
experimentally validate that, by experiencing such edge cases
within our synthesized environment during training, these agents
exhibit greater robustness in the real-world and recover approx-
imately two times more frequently compared to state-of-the-art
imitation learning algorithms.

In summary, the key contributions of this letter can be sum-
marized as:

1) VISTA, a photorealistic, scalable, data-driven simulator
for synthesizing a continuum of new perceptual inputs lo-
cally around an existing dataset of stable human collected
driving data;

2) An end-to-end learning pipeline for training autonomous
lane-stable controllers using only visual inputs and sparse
reward signals, without explicit supervision using ground
truth human control labels; and

3) Experimental validation that agents trained in VISTA can
be deployed directly in the real-world and achieve more
robust recovery compared to previous state-of-the-art im-
itation learning models.

To the best of our knowledge, this work is the first published
report of a full-scale autonomous vehicle trained entirely in
simulation using only reinforcement learning, that is capable of
being deployed onto real roads and recovering from complex,
near crash driving scenarios.

II. RELATED WORK

Training agents in simulation capable of robust generalization
when deployed in the real world is a long-standing goal in many
areas of robotics [9]–[12]. Several works have demonstrated
transferable policy learning using domain randomization [13]
or stochastic augmentation techniques [14] on smaller mobile
robots. In autonomous driving, end-to-end trained controllers
learn from raw perception data, as opposed to maps [15] or other
object representations [16]–[18]. Previous works have explored
learning with expert information for lane following [1], [2], [19],
[20], full point-to-point navigation [3], [8], [21], and shared
human-robot control [22], [23], as well as in the context of RL
by allowing the vehicle to repeatedly drive off the road [4]. How-
ever, when trained using state-of-the-art model-based simulation

engines, these techniques are unable to be directly deployed in
real-world driving conditions.

Performing style transformation, such as adding realistic tex-
tures to synthetic images with deep generative models, has been
used to deploy learned policies from model-based simulation
engines into the real world [9], [24]. While these approaches can
successfully transfer low-level details such as textures or sen-
sory noise, these approaches are unable to transfer higher-level
semantic complexities (such as vehicle or pedestrian behaviors)
present in the real-world that are also required to train robust
autonomous controllers. Data-driven engines like Gibson [25]
and FlightGoggles [26] render photorealistic environments us-
ing photogrammetry, but such closed-world models are not
scalable to the vast exploration space of all roads and driving
scenarios needed to train for real world autonomous driving.
Other simulators [27] face scalability constraints as they require
ground truth semantic segmentation and depth from expensive
LIDAR sensors during collection.

The novelty of our approach is in leveraging sparsely-sampled
trajectories from human drivers to synthesize training data suf-
ficient for learning end-to-end RL policies robust enough to
transfer to previously unseen real-world roads and to recover
from complex, near crash scenarios.

III. DATA-DRIVEN SIMULATION

Simulation engines for training robust, end-to-end au-
tonomous vehicle controllers must address the challenges of
photorealism, real-world semantic complexities, and scalable
exploration of control options, while avoiding the fragility
of imitation learning and preventing unsafe conditions during
data collection, evaluation, and deployment. Our data-driven
simulator, VISTA, synthesizes photorealistic and semantically
accurate local viewpoints as a virtual agent moves through
the environment (Fig. 2). VISTA uses a repository of sparsely
sampled trajectories collected by human drivers. For each tra-
jectory through a road environment, VISTA synthesizes views
that allow virtual agents to drive along an infinity of new local
trajectories consistent with the road appearance and semantics,
each with a different view of the scene.

Upon receiving an observation of the environment at time
t, the agent commands a desired steering curvature, κt, and
velocity, vt to execute at that instant until the next observation.
We denote the time difference between consecutive observations
as Δt. VISTA maintains an internal state of each agent’s posi-
tion, (xt, yt), and angular orientation, θt, in a global reference
frame. The goal is to compute the new state of the agent at time,
t+Δt, after receiving the commanded steering curvature and
velocity. First, VISTA computes the changes in state since the
last timestep,

Δθ = |vt ·Δt| · κt,

Δx̂ = (1− cos (Δθ)) /κt,

Δŷ = sin (Δθ) /κt. (1)

VISTA updates the global state, taking into account the change
in the agent’s orientation, by applying a 2D rotational matrix
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Fig. 2. Simulating novel viewpoints for learning: Schematic of an autonomous agent’s interaction with the data-driven simulator (A). At time step, t, the agent
receives an observation of the environment and commands an action to execute. Motion is simulated in VISTA and compared to the human’s estimated motion in
the real world (B). A new observation is then simulated by transforming a 3D representation of the scene into the virtual agent’s viewpoint (C).

before updating the position in the global frame,

θt+Δt = θt +Δθ,[
xt+Δt

yt+Δt

]
=

[
xt

yt

]
+

[
cos(θt+Δt) − sin(θt+Δt)

sin(θt+Δt) cos(θt+Δt)

][
Δx̂

Δŷ

]
.

(2)

This process is repeated for both the virtual agent who is navi-
gating the environment and the replayed version of the human
who drove through the environment in the real world. Now
in a common coordinate frame, VISTA computes the relative
displacement by subtracting the two state vectors. Thus, VISTA
maintains estimates of the lateral, longitudinal, and angular
perturbations of the virtual agent with respect to the closest
human state at all times (cf. Fig. 2B).

VISTA is scalable as it does not require storing and operating
on 3D reconstructions of entire environments or cities. Instead,
it considers only the observation collected nearest to the virtual
agent’s current state. Simulating virtual agents over real road
networks spanning thousands of kilometers requires several
hundred gigabytes of monocular camera data. Fig. 2C presents
view synthesis samples. From the single closest monocular

image, a depth map is estimated using a convolutional neural
network using self-supervision of stereo cameras [28]. Using
the estimated depth map and camera intrinsics, our algorithm
projects from the sensor frame into the 3D world frame. After
applying a coordinate transformation to account for the relative
transformation between virtual agent and human, the algorithm
projects back into the sensor frame of the vehicle and returns
the result to the agent as its next observation. To allow some
movement of the virtual agent within the VISTA environment,
we project images back into a smaller field-of-view than the
collected data (which starts at 120◦). Missing pixels are in-
painted using a bilinear sampler, although we acknowledge more
photorealistic, data-driven approaches [29] that could also be
used. VISTA is capable of simulating different local rotations
(±15◦) of the agent as well as both lateral and longitudinal
translations (±1.5 m) along the road. As the free lateral space
of a vehicle within its lane is typically less than 1 m, VISTA
can simulate beyond the bounds of lane-stable driving. Note
that while we focus on data-driven simulation for lane-stable
driving in this work, the presented approach is also applica-
ble to end-to-end navigation [3] learning by stitching together
collected trajectories to learn through arbitrary intersection
configurations.
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A. End-to-End Learning

All controllers presented in this letter are learned end-to-end,
directly from raw image pixels to actuation. We considered
controllers that act based on their current perception without
memory or recurrence built in, as suggested in [2], [16]. Features
are extracted from the image using a series of convolutional
layers into a lower dimensional feature space, and then through
a set of fully connected layers to learn the final control actuation
commands. Since all layers are fully differentiable, the model
was optimized entirely end-to-end. As in previous work [2], [3],
we learn lateral control by predicting the desired curvature of
motion. Note that curvature is equal to the inverse turning radius
[m−1] and can be converted to steering angle at inference time
using a bike model [30], assuming minimal slip.

Formally, given a dataset of n observed state-action pairs
(st, at)

n
i=1 from human driving, we aim to learn an autonomous

policy parameterized by θ which estimates ât = f(st;θ). In
supervised learning, the agent outputs a deterministic action by
minimizing the empirical error,

L(θ) =

n∑
i=1

(f(st;θ)− at)
2. (3)

However, in the RL setting, the agent has no explicit feedback
of the human actuated command, at. Instead, it receives a
reward rt for every consecutive action that does not result in an
intervention and can evaluate the return, Rt, as the discounted,
accumulated reward

Rt =
∞∑

k=0

γkrt+k (4)

where γ ∈ (0, 1] is a discounting factor. In other words, the
return that the agent receives at time t is a discounted distance
traveled between t and the time when the vehicle requires an
intervention. As opposed to in supervised learning, the agent op-
timizes a stochastic policy over the space of all possible actions:
π(a|st;θ). Since the steering control of autonomous vehicles is
a continuous variable, we parameterize the output probability
distribution at time t as a Gaussian, (μt, σ

2
t ). Therefore, the

policy gradient, ∇θπ(a|st;θ), of the agent can be computed
analytically:

∇θπ(a|st;θ) = π(a|st;θ)∇θ log (π(a|st;θ)) (5)

Thus, the weights θ are updating in the direction
∇θ log(π(a|st;θ)) ·Rt during training [31], [32].

We train RL agents in various simulated environments, where
they only receive rewards based on how far they can drive
without intervention. Compared to supervised learning, where
agents learn to simply imitate the behavior of the human driver,
RL in simulation allows agents to learn suitable actions which
maximize their total reward in that particular situation. Thus, the
agent has no knowledge of how the human drove in that situation.
Using only the feedback from interventions in simulation, the
agent learns to optimize its own policy and thus to drive longer
distances (Algorithm 1).

We define a learning episode in VISTA as the time the agent
starts receiving sensory observations to the moment it exits

Fig. 3. Training images from various comparison methods: Samples drawn
from the real-world, IMIT-AUG (A) and CARLA (B-C). Domain randomization
DR-AUG (C) illustrates a single location for comparison.

Algorithm 1: Policy Gradient (PG) Training in VISTA
0: Initialize θ {NN weights}
0: Initialize D ← 0 {Single episode distance}
0: while D < 10 km do
0: st ← VISTA.reset()
0: while VISTA.done = False do
0: at ∼ π(st;θ) {Sample action}
0: st+1 ← VISTA.step(at) {Update state}
0: rt ← 0.0 if VISTA.done else 1.0 {Reward}
0: D ← VISTA.episode_distance
0: Rt ←

∑T
k=1 γ

krt+k {Discounted return}
0: θ ← θ + η

∑T
t=1∇θ log π(at|st;θ)Rt {PG Update}

0: return θ = 0

its lane boundaries. Assuming the original data was collected
at approximately the center of the lane, this corresponds to
declaring the end of an episode as when the lateral translation
of the agent exceeds ±1m.

Upon traversing a road successfully, the agent is transported
to a new location in the dataset. Thus, training is not limited to
only long roads, but can also occur on multiple shorter roads.
An agent is said to sufficiently learn an environment once it
successfully drives for 10 km without interventions.

IV. BASELINES

In this subsection, we discuss the evaluated baselines. The
same input data formats (camera placement, field-of-view, and
resolution) were used for both IL and RL training. Furthermore,
model architectures for all baselines were equivalent with the
exception of only the final layer in RL.

A. Real-World: Imitation Learning

Using real-world images (Fig. 3A) and control we bench-
mark models trained with end-to-end imitation learning (IMIT-
AUG). Augmenting learning with views from synthetic side
cameras [2], [20], [33] is the standard approach to increase ro-
bustness and teach the model to recover from off-center positions
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on the roads. We employ the techniques presented in [2], [20]
to compute the recovery correction signal that should be trained
with given these augmented inputs.

B. Model-Based Simulation: Sim-to-Real

We use the CARLA simulator [34] for evaluating the perfor-
mance of end-to-end models using sim-to-real transfer learning
techniques. As opposed to our data-driven simulator, CARLA,
like many other autonomous driving simulators, is model-based.
While tremendous effort has been placed into making the
CARLA environment (Fig. 3B) as photorealistic as possible,
a simulation gap still exists. We found that end-to-end models
trained solely in CARLA were unable to transfer to the real-
world. Therefore, we evaluated the following two techniques
for bridging the sim-to-real gap in CARLA.

Domain Randomization: First, we test the effect of domain
randomization (DR) [13] on learning within CARLA. DR at-
tempts to expose the learning agent to many different random
variations of the environment, thus increasing its robustness
in the real-world. In our experiments, we randomized various
properties throughout the CARLA world (Fig. 3C), including
the sun position, weather, and hue of each of the semantic classes
(i.e. road, lanes, buildings, etc). Like IMIT-AUG we also train
CARLA DR models with viewpoint augmentation and thus,
refer to these models as DR-AUG.

Domain Adaptation: We evaluate a model that is trained with
both simulated and real images to learn shared control. Since the
latent space between the two domains is shared [9], the model
can output a control from real images during deployment even
though it was only trained with simulated control labels during
training. Again, viewpoint augmentation is used when training
our sim-to-real baseline, S2R-AUG.

C. Expert Human

A human driver (HUMAN) drives the designed route as close
to the center of the lane as possible, and is used to fairly evaluate
and compare against all other learned models.

V. RESULTS

A. Real-World Testbed

Learned controllers were deployed directly onboard a full-
scale autonomous vehicle (2015 Toyota Prius V) which we
retrofitted for full autonomous control [35]. The primary per-
ception sensor for control is a LI-AR0231-GMSL camera (120
degree field-of-view), operating at 15 Hz. Data is serialized with
h264 encoding with a resolution of 19201208. At inference time,
images are scaled down approximately 3 fold for performance.
Also onboard are inertial measurement units (IMUs), wheel
encoders, and a global positioning satellite (GPS) sensor for
evaluation as well as an NVIDIA PX2 for computing. To stan-
dardize all model trials on the test-track, a constant desired speed
of the vehicle was set at 20 kph, while the model commanded
steering.

The model’s generalization performance was evaluated on
previously unseen roads. That is, the real-world training set

contained none of the same areas as the testing track (spanning
over 3 km) where the model was evaluated.

Agents were evaluated on all roads in the test environment.
The track presents a difficult rural test environment, as it does
not have any clearly defined road boundaries or lanes. Cracks,
where vegetation frequently grows onto the road, as well as
strong shadows cast from surrounding trees, cause classical road
detection algorithms to fail.

B. Reinforcement Learning in VISTA

In this section, we present results on learning end-to-end
control of autonomous vehicles entirely within VISTA, under
different weather conditions, times of day, and road types.
Each environment collected for this experiment consisted of,
on average, one hour of driving data from that scenario.

We started by learning end-to-end policies in different times
of day (Fig. 4A) and, as expected, found that agents learned
more quickly during the day than at night, where there was
often limited visibility of lane markers and other road cues. Next,
we considered changes in the weather conditions. Environments
were considered “rainy” when there was enough water to coat
the road sufficiently for reflections to appear or when falling
rain drops were visible in the images. Comparing dry with rainy
weather learning, we found only minor differences between
their optimization rates (Fig. 4B). This was especially surprising
considering the visibility challenges for humans due to large re-
flections from puddles as well as raindrops covering the camera
lens during driving. Finally, we evaluated different road types
by comparing learning on highways and rural roads (Fig. 4C).
Since highway driving has a tighter distribution of likely steering
control commands (i.e., the car is traveling primarily in a nearly
straight trajectory), the agent quickly learns to do well in this
environment compared to the rural roads, which often have much
sharper and more frequent turns. Additionally, many of the rural
roads in our database lacked lane markers, thus making the
beginning of learning harder since this is a key visual feature
for autonomous navigation.

In our experiments, our learned agents iteratively explore and
observe their surroundings (e.g. trees, cars, pedestrians, etc.)
from novel viewpoints. On average, the learning agent converges
to autonomously drive 10 km without crashing within 1.5 million
training iterations. Thus, when randomly placed in new locations
with similar features during training the agent is able to use its
learned policy to navigate. While demonstration of learning in
simulation is critical for development of autonomous vehicle
controllers, we also evaluate the learned policies directly on-
board our full-scale autonomous vehicle to test generalization
to the real-world.

C. Evaluation in the Real World

Next, we evaluate VISTA and baseline models deployed
in the real-world. First, we note that models trained solely in
CARLA did not transfer, and that training with data viewpoint
augmentation [2] strictly improved performance of the baselines.
Thus, we compare against baselines with augmentation.
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Fig. 4. Reinforcement learning in simulation: Autonomous vehicles placed in the simulator with no prior knowledge of human driving or road semantics
demonstrate the ability to learn and optimize their own driving policy under various different environment types. Scenarios range from different times of day (A),
to weather condition (B), and road types (C).

Fig. 5. Evaluation of end-to-end autonomous driving: Comparison of simulated domain randomization [13] and adaptation [9] as well as real-world imitation
learning [2] to learning within VISTA (left-to-right). Each model is tested 3 times at fixed speeds on every road on the test track (A), with interventions marked as
red dots. The variance between runs (B) and the distribution of deviations from the mean trajectory (C) illustrate model consistency.
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TABLE I
REAL-WORLD PERFORMANCE COMPARISON: EACH ROW DEPICTS A DIFFERENT PERFORMANCE METRIC EVALUATED ON OUR TEST TRACK. BOLD CELLS IN A

SINGLE ROW REPRESENT THE BEST PERFORMERS FOR THAT METRIC, WITHIN STATISTICAL SIGNIFICANCE

Fig. 6. Robustness analysis: We test robustness to recover from near crash
positions, including strong translations (top) and rotations (bottom). Each model
and starting orientation is repeated at 15 locations on the test track. A recovery
is successful if the car recovers within 5 seconds.

Each model is trained 3 times and tested individually on every
road on the test track. At the end of a road, the vehicle is restarted
at the beginning of the next road segment. The test driver
intervenes when the vehicle exits its lane. The mean trajectory of
the three trials are shown in Fig. 5A, with intervention locations
drawn as red points. Road boundaries are plotted in black for
scale of deviations. IMIT-AUG yielded highest performance out
of the three baselines, as it was trained directly with real-world
data from the human driver. Of the two models trained with
only CARLA control labels, S2R-AUG outperformed DR-AUG
requiring an intervention every 700 m compared to 220 m. Even
though S2R-AUG only saw control labels from simulation, it
received both simulated and real perception. Thus, the model
learned to effectively transfer some of the details from simulation
into the real-world images allowing it to become more stable
than purely randomizing away certain properties of the sim-
ulated environment (ie. DR-AUG). VISTA exhibited the best
performance of all the considered models and never required
any interventions throughout the trials (totaling > 10 km of
autonomous driving).

The variance across trials is visualized in Fig. 5B–C (line color
in (B) indicates variance at that location). For each baseline, the
variance tended to spike at locations that resulted in interven-
tions, while the variance of VISTA was highest in ambiguous

situations such as approaching an intersection, or wider roads
with multiple possible correct control outputs.

We also initiated the vehicle from off-orientation positions
with significant lateral and rotational offsets to evaluate robust-
ness to recover from these near-crash scenarios. A successful
recovery is indicated if the vehicle is able to successfully ma-
neuver and drive back to the center of its lane within 5 seconds.
We observed that agents trained in VISTA were able to recover
from these off-orientation positions on real and previously un-
encountered roads, and also significantly outperformed models
trained with imitation learning on real world data (IMIT) or
in CARLA with domain transfer (DR-AUG and S2R-AUG).
On average, VISTA successfully recovered over 2× more fre-
quently than the next best, IMIT-AUG. The performance of
IMIT-AUG improved with translational offsets, but was still sig-
nificantly outperformed by VISTA models trained in simulation
by approximately 30%. All models showed greater robustness
to recovering from translations than rotations since rotations
required significantly more aggressive control to recover with
a much smaller room of error. In summary, deployment results
for all models are shown in Table I.

VI. CONCLUSION

Simulation has emerged as a potential solution for training
and evaluating autonomous systems on challenging situations
that are often difficult to collect in the real-world. However,
successfully transferring learned policies from model-based
simulation into the real-world has been a long-standing field
in robot learning. In this letter, we present VISTA, an end-
to-end data-driven simulator for training autonomous vehicles
for deployment into the real-world. VISTA supports training
agents anywhere within the feasible band of trajectories that
can be synthesized from data collected by a human driver on
a single trajectory. In the future, we will focus on not only
synthesizing perturbations to the ego-agent, but also to other
dynamic obstacles in the environment (i.e. cars, pedestrians,
etc.) [27], [36] or the environment [37].

Our experiments empirically validate the ability to train
models in VISTA using RL, and directly deploy these learned
policies on a full-scale autonomous vehicle that can then suc-
cessfully drive autonomously on real roads it has never seen
before. We demonstrate that our learned policies exhibit greater
robustness in recovery from near-crash scenarios. While we treat
lane-stable control as the problem of choice, the methods and
simulator presented here are extendable to robust learning of
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more complex policies such as point-to-point navigation [3],
object avoidance [38], and lane changes [39]. We believe our
approach represents a major step towards the direct, real world
deployment of end-to-end learning techniques for robust training
of autonomous vehicle controllers.
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