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MapLite: Autonomous Intersection Navigation
Without a Detailed Prior Map

Teddy Ort , Krishna Murthy , Rohan Banerjee , Sai Krishna Gottipati , Dhaivat Bhatt ,
Igor Gilitschenski , Liam Paull , and Daniela Rus

Abstract—In this work, we present MapLite: a one-click au-
tonomous navigation system capable of piloting a vehicle to an
arbitrary desired destination point given only a sparse publicly
available topometric map (from OpenStreetMap). The onboard
sensors are used to segment the road region and register the
topometric map in order to fuse the high-level navigation goals
with a variational path planner in the vehicle frame. This enables
the system to plan trajectories that correctly navigate road intersec-
tions without the use of an external localization system such as GPS
or a detailed prior map. Since the topometric maps already exist
for the vast majority of roads, this solution greatly increases the
geographical scope for autonomous mobility solutions. We imple-
ment MapLite on a full-scale autonomous vehicle and exhaustively
test it on over 15 km of road including over 100 autonomous
intersection traversals. We further extend these results through
simulated testing to validate the system on complex road junction
topologies such as traffic circles.

Index Terms—Autonomous vehicle navigation, field robots,
intelligent transportation systems.

I. INTRODUCTION

A T PRESENT, the majority of industry-led approaches to
autonomous driving involve either building and maintain-

ing detailed maps, or making structure assumptions about the
environment such as the existence of road markings on highways
and major roads. The latter approach is very appealing since
building and maintaining maps is time-consuming, expensive,
and suffers from perceptual aliasing in some rural environments.
However, road markings are not always present. In fact, only
about 2/3 of the roads in the United States are paved [1].
Additionally, these approaches based on local infrastructure
generally only enable road following and not navigation (i.e.,
traversing intersections to reach a goal). As a result, there is a
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Fig. 1. MapLite: A visualization of our system operating on a rural road in
Central Massachusetts. The white lines show the topometric map obtained from
OpenStreetMap.org. The colored pointcloud is obtained from the lidar scanner
used in MapLite to navigate without the need to localize on a detailed prior map.
Note that the noisy topometric map has been registered to the local sensor data.

significant portion of the road network that cannot be easily used
with state-of-the-art autonomous driving systems.

One class of approaches addressing this problem is based
on using neural network-based driving approaches [2]–[5] as
they have demonstrated lane-stable driving without detailed
maps. However, those approaches lack explainability, verifiable
robustness, and require a high amount of training data to gener-
alize. Early approaches incorporating topometric map data for
navigation [6] usually rely on building structure information
and are thus not applicable to most rural settings. In a previous
work [7], we demonstrated lane following behaviors without
detailed metric maps. This approach required human-driver dis-
engagements at intersections, owing to their complex topologies
and, thus, did not allow for fully autonomous point-to-point
navigation.

In this work, we propose a ”one-click” solution for navigation
using only a weak topological prior, such as OpenStreetMap
(OSM), that is available for the entire road network and sig-
nificantly less memory-intensive than a full dense map. The
main advantage of this approach is that it requires only freely
existing infrastructure (the OSM) and therefore scales to rural
environments without the need for any map maintenance or
updating of neural network models.

Our proposed method comprises three main parts: First, we
segment the scene using on-board sensors. Second, we perform
a topometric registration to fit the OSM to the local sensor data
frame. Finally, we solve the navigation problem at the topologi-
cal level and then the path planning problem at the metric level.
To the best of our knowledge this is the first deployment of an
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autonomous navigation pipeline that can autonomously plan and
execute high-level navigation tasks without the need for a precise
georeferenced localization estimate either from high-precision
GPS, or highly detailed prior maps. In summary, we claim the
following contributions of our method:

1) A novel topometric map registration algorithm that ap-
proximates the maximum a posteriori estimate of the
registration between the vehicle and the map.

2) A route planning method we call “smart replanning” that
allows for efficiently solving the topological navigation
problem on a frequently updating map.

3) Extensive evaluations on a full-scale autonomous car in
a rural driving setting where the roads lack structure and
through simulations in CARLA [8] with more complex
road topologies such as traffic circles.

II. RELATED WORK

In this section, we briefly review some closely related ap-
proaches.

Map-based autonomous driving. Most of the existing ap-
proaches to autonomous driving rely on detailed prior maps of
the environment, often constructed using precision laser scan-
ners. Typical driving strategies on pre-built maps involve some
form of localization: lidar-based [9]–[11] or vision-based [12],
followed by local trajectory and motion planning. Evidently,
such approaches need extremely precise prior maps, and cannot
easily adapt to environment changes (e.g., repaved roads, de-
tours, etc.). Furthermore, such approaches are not suitable for
driving beyond confined areas such as cities/towns.

Map-less autonomous driving. To overcome some of the
scalability issues with map-based autonomous driving, there
have been several attempts to go mapless (at least in part). Such
approaches leverage environment structure for local perception.
While a majority of such approaches rely on color/grayscale
images to detect structures such as roads [13]–[15], lane mark-
ings [16], [17], and road boundaries [18], these suffer the
common pitfalls of any image-based segmentation algorithm:
poor generalization across varying illumination, scene dynam-
ics, and infrastructural changes. A few other approaches [7]
use lidar scans to detect drivable regions. However, most such
approaches [16], [17] make assumptions about the local structure
of the environment (eg. availability of lane-markings, etc.).

Another popular set of approaches take an end-to-end learning
approach to mapless driving. These are either based on imitation
learning [2]–[4], or on reinforcement learning [5]. While such
approaches alleviate the need for precision maps, they are still
laborious to implement, as they require enormous amounts of
data/demonstrations from a (human) expert.

Road segmentation. In contrast to mapped approaches,
where the driveable road surface is taken as a prior from the map,
real-time road surface segmentation is a crucial requirement for
mapless navigation. The basic problem of road segmentation
is simple: for each element in the incoming sensor data, label
it as either “road” or “off-road”. Fig. 2 “Road Segmentation”
shows an example pointcloud that has been segmented showing
the points lying on the road surface in black and the off-road

points in blue. This problem has been studied extensively in
the literature including model-based approaches such as [15]
and those that rely on camera images [14], [19], lidar [20], and
combined vision and lidar [21], [22]. However, the MapLite
scenario imposes some unique constraints. First, since a major
benefit of our independence from prior maps is the ability to
operate in large-scale rural regions where roads are missing
structures such as lane markings or curbs, we abstain from utiliz-
ing these features in our approach. Furthermore, deployment on
a real-world vehicle necessitates fast processing time. Finally,
rural roads are often unlit, and have highly varying illumination
even during the daytime due to seasonal vegetation. Therefore,
we prefer methods that rely solely on lidar since these sensors
are immune to changes in ambient lighting.

Here, we implement and compare three different model
choices for our road segmentation module: a linear Support
Vector Machine (SVM) and two convolutional networks: Spar-
seConvNet (SCN) [23] and PointNet [24].

Topometric localization/registration. Another class of ap-
proaches to autonomous driving uses topometric maps (pre-
dominantly OpenStreetMaps [25]). In a series of works, Bal-
lardini et al. [26]–[28] leverage the OSM for localization and
intersection detection. In a similar vein, OpenStreetSLAM [29]
aligns OSM data to local maps as an additional cue in a Monte-
Carlo localization framework. However, all these approaches
demonstrate the use of OSM in urban areas, where the pre-
cision of OSM is significantly higher than for rural areas. In
particular, our approach can efficiently deal with missing roads,
incorrect intersection annotations, and large deviations in road
shapes.

III. MAPLITE METHOD

An overview of our proposed system is shown in Fig. 2.
Note that our approach requires only a topometric map, which
does not contain the detail necessary for precise localization.
However, we demonstrate that it suffices for specifying the goal
location and onboard sensors can be used to plan safe trajectories
on the fly. The following subsections describe the five main
components that enable this system to safely navigate to the
desired location without the need for a detailed map: Topometric
Map, Road Segmentation, Map Registration, Route Planner, and
Motion Planner.

A. Topometric Map

The topometric maps used by MapLite are simple graph-like
data structures with the extension that each node is associated
with a two dimensional point on the surface of the earth de-
scribed by its longitude and latitude. We utilize the flat-earth
approximation with the UTM transform [30] which places the
vertices in a plane. Thus for each map M we have

M = {V,E}
where each vertex vi ∈ R2 describes a waypoint and each edge
ei ∈ E ⊂ |V | × |V | describes a road segment. However, while
the connectivity of the network can be assumed to be relatively
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correct, the same cannot be said for either the relative or global
accuracy of the specific waypoints.

Topometric maps of the roads throughout the world are readily
available from a number of sources. For this work, we used maps
downloaded from OpenStreetMap [25] which provides open
access for the public to both download and upload mapping data.
Fig. 1 shows an example of the topometric map (in white) used.

These topometric maps differ from the detailed maps typically
used for localization in a number of important ways. First,
detailed maps typically need to be recorded with a human driver
prior to deployment and often require further labor-intensive
manual editing to ensure the maps are accurate [9]. For this
reason, detailed maps are currently available for only a handful
of cities and even those are often only useful for a particular
autonomous vehicle sensor setup. Topometric maps on the other
hand, are already freely available for most roads throughout the
world.

Another difference between topometric maps and detailed
maps lies in the storage size. While a detailed map used to
localize over the 20,000 miles of roads in a small city takes
about 200 GB [9], a similar topometric map could be stored in
about 3.5 GB. Considering the US alone contains over 4,000,000
miles of roadways, this can have a large impact on the storage
and data transmission required for autonomous navigation.

Finally, since detailed maps include many transient surface
features, any changes to the road surface, seasonal vegetation, or
building construction can render a detailed map obsolete often in
just a few months. Topometric maps, on the other hand, only need
updating when the road network itself changes which means
these maps are typically accurate for many years.

B. Road Surface Segmentation

We use a linear SVM model for road surface segmentation
since its extremely fast runtime is needed for real-time operation
at speed, and its accuracy was close to that of the much more
performance-heavy CNNs (see section IV-B for a comparison).
Our linear SVM relies on five features extracted from the lidar
data. The first feature is the elevation z measured directly by the
sensor. Next, a measure of the surface texture is calculated using
an approach similar to [31] using a sliding window for all points
pi in the neighborhood Np. Then the local variance vp for each
point is calculated using

vp =
1

|Np|
∑

i∈Np

|pi − p|2

where p is the mean over all points in Np. This feature yields
a measure of the local surface texture that is larger for rough
surfaces (e.g. grass and trees) and smaller on driveable surfaces.
Next, the intensity of each return is also included to account for
the difference in reflectivity of road surfaces. The fourth feature
is a unique laser ID accounting for physical differences in each
of the 64 transmitters in the HDL-64 sensor. The laser ID is
included in the training to account for systemic bias between the
transmitters in a single device. Thus, new training data would
need to be collected if switching to a new sensor. Finally, an
indicator feature in {0, 1} is used to indicate any points that did

not return. This is important as the presence of an out-of-range
value (either too far or too close) contains valuable information
for segmentation. These five features are used to together to
classify each point as either road or not road.

C. Topometric Registration

In the map registration step, we aim to obtain an estimate of the
robot location on the map using only odometry measurements
and lidar scans. Formally, our goal is to obtain the estimate

x̂t = argmin
xt

(− lnP
(
xt|Zo

1:t, Z
L
1:t

))
(1)

wherext = [xt, yt, θt] is the robot’s pose in the topometric map
frame at time twhileZo

1:t andZL
1:t are the sets of all odometry and

lidar measurements up to time t respectively. An approximation
of this likelihood is required to allow for real-time operation.

1) Likelihood Approximation: Using Bayes’ rule, the prob-
ability in (1) can be represented in terms of its prior, the
lidar observation likelihood, and the odometry-based state
prediction as

P
(
xt|Zo

1:t, Z
L
1:t

)

∝x P
(
ZL
t |xt

) · P (
xt|Zo

1:t, Z
L
1:t−1

)

= P
(
ZL
t |xt

) ∫
P (xt|xt−1, Z

o
t )

· P (
xt−1|Zo

1:t−1, Z
L
1:t−1

)
dxt−1.

We approximate the prior as a discrete distribution concentrated
at the last estimate δ(xt−1 − x̂t−1) which results in

P
(
xt|Zo

1:t, Z
L
1:t

) ∝x P
(
ZL
t |xt

) · P (xt|x̂t−1, Z
o
t ) .

2) Lidar Observation LikelihoodP (ZL
t |xt): Each lidar scan

ZL
t is represented as a set of n 3-tuples zi = (xL

i , y
L
i , li) where

xL
i , y

L
i ∈ R give the position of each measured lidar point in the

sensor frame and li is a binary classification label obtained in the
previously described segmentation module. We define the signed
distance function fD(zi, xt, M) representing the distance from
the point zi to the nearest point on any edge in the topological
map M (assuming the vehicle is in location xt). We model the
probability of observing each point zi at location xt using a
sigmoid function

P (zi|xt) =

{
1

1+exp(fD(zi,xt,M)−rw) li = 1

1− 1
1+exp(fD(zi,xt,M)−rw) li = 0

(2)

where rw is a tunable parameter that represents the likelihood
of finding points labeled road, far from the map M which
contains road centerlines. Notice that at the road center where
fD(zi,M) = 0, P (zi) ≈ 1 if l = 1 P (zi) ≈ 0 if l = 0 while far
from the road, the converse is true. Also, in this work, a constant
value was sufficient for rw since all the roads traversed were of
similar width (5−7 m) However, given that the lanecount and
roadway class is available for most roads on OpenStreetMap,
this parameter could easily be extended to depend on the road
type. Finally, the overall probability of an entire lidar scan is
computed as the product over the probabilities of the individual
measurement tuples P (ZL

t |xt) =
∏

i P (zi|xt).
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Fig. 2. The MapLite system differs from a typical autonomous navigation pipeline in five components: Topological Map, Road Segmentation, Map Registration,
Route Replanning, and Motion Planning.

3) Odometry Based Prediction P (xt|x̂t−1, Z
o
t ): Each

odometry measurement Zo
t = [Δxt, Δyt, Δθt] with respect to

the previous pose is obtained by fusing both the wheel encoder
information and the IMU measurements using an Extended
Kalman Filter [32]. The odometry based likelihood of the future
state is then modeled as

P (xt|x̂t−1, Z
o
t ) ∝x exp

(
−||xt − x̂t−1 + Zo

t ||
b

)

with scale factor b that is obtained, for computational reasons,
through parameter tuning rather than by estimating it along with
the prior.

4) Implementation for Real-Time Operation: The main re-
maining driver of computational cost is evaluating P (ZL

t |xt).
This is due to the fact that fD(ozi,M) ∈ O(|E|) (with |E| being
the number of edges inM ) and thusP (ZL

t |xt) ∈ O(n · |E|). To
achieve a speed-up we employ a number of further approxima-
tions. First, we discretize the space containing the map M into
cells of size rc (0.5 m for our experiments) and precompute the
distance transform. This computation only needs to happen once
for each map, and in practice takes <1 s to compute for a map of
size 1km2. This approximation turns distance computations into
a simple lookup with runtime independent of number of edges
or scanned points. Next, we randomly subsample the input lidar
scans using two tunable parameters s ∈ N+, b ∈ [0, 1] where s
is the number of points to sample, and b is the desired share
of points from the road (i.e. where li = 1) to account for high
label-imbalance. Finally, we simplify (2) by approximating

(1 + exp (fD (zi,xt,M)− rw))
−1

≈ 1−min

(
fD (zi,xt,M)

rw
, 1

)
.

In practice, we found these approximations to have a negli-
gible effect on system performance, while decreasing the time
required to solve the problem from 10 s to 20 ms on a standard
laptop with an Intel i7 processor.

D. Route Planning

The route planner is responsible for choosing the shortest
path from the start location of the vehicle to the goal. It takes
the registered topometric map as input, converts it into a graph
structure and calculates euclidean distances as edge weights.
Next A* [33] is used to plan the shortest path from the start to
the goal. Given the heavy computation required by the other
modules, we cannot afford to recalculate the entire route at

Algorithm 1: Fast Route Replanning.
1: Inputs: (goal, map, pose, route_plan)
2: while pose not equal to goal do
3: if route_plan is empty then
4: Store a new route_plan from A*(pose, goal, map)
5: Set path using route_plan
6: else
7: Set path using fast_update(route_plan, map)
8: if distance(pose, path) > recalculate_threshold

then
9: Recalculate a new route_plan with A*

10: end if
11: end if
12: return path
13: end while

a high frequency. However, since the topometric registration
frequently updates the map we cannot simply reuse the original
route plan. To account for this, we use a “fast_update” method
that updates the positions of the waypoints in the path in the
metric space without replanning the route in the topological
space. Furthermore, since it is possible the vehicle could deviate
from the planned path (e.g. if the map registration hasn’t updated
recently) we also check for deviations from the plan and only
replan with the A* algorithm as necessary. Algorithm 1 describes
how the fast replanner determines when a replan of the route plan
is necessary or simply a “fast_update” of the existing path to the
new map. In our testing, we found that this reduced the average
latency of the route planning module from 100 ms to 1.5 ms.
In section IV-D we show that this optimization has a substantial
impact on real-world system performance.

Additionally, we utilize a Finite State Machine to break the
entire route plan into sub-tasks (e.g. drive to the next intersec-
tion) which enables the vehicle to wait for a goal, drive, make the
correct navigation choice at each intersection, and finally stop
at the goal destination.

E. Trajectory Planner

The trajectory planner generates the trajectory the vehicle
must follow to reach its destination. As seen in Fig. 2 it takes as
input a segmented lidar scan as well as the high-level navigation
reference path from the Route Planner. We utilize a variational
trajectory planner to generate safe trajectories. However, unlike
typical [34] implementations, we do not obtain road boundaries
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Fig. 3. An example result from the trajectory planner. The vehicle is located
at the blue dot, and received the white path from the Route Planner to indicate a
right turn. The red (road) and blue (off-road) road segmentation is used to plan
the green trajectory which follows the high-level navigation goal while safely
remaining on the road.

from a detailed map. Instead, the road boundaries are obtained
from the road segmentation module (Section III-B) and this plan-
ner integrates the high-level navigation information obtained
from the route planner to plan a locally safe path in the sensor
frame. Fig. 3 shows an example of the typical problem this plan-
ner solves. The blue point is the current vehicle location, and the
red and blue represents the road/not-road segmentation result.
The white path, is the result from the topometric registration
and route planning modules, which, while reliably providing
navigation information (e.g. in this case “turn right”) we cannot
assume it to be precise at a metric level, since the topometric
map does not contain such detail. Instead, the planner chose the
green route, as it safely remains on the road, while also obeying
the high-level navigation requirement.

The variational trajectory planner utilizes B-splines [35] to
parameterize smooth trajectories. For a given reference trajec-
tory r the planner completes a two-stage optimization process.
The first stage local goal-point selection consists of determining
the closest point to the high-level navigation goal that is both in
the vehicle field of view and also lies on a road surface. The
second stage trajectory optimization seeks an “optimal” path
from the current vehicle location to the goal-point based on a
number factors described shortly.

1) Local Goal Point Selection: The reference path is first
clipped to the sensor range X ∈ R2. Then, for a reference path
r consisting of n waypoints, we denote the final point rn. Note,
although by construction rn is in the sensor range, it may not
lie on the road. To obtain the local goal point we define a
cost function J(x) = [d(x), de(x, rn)] for x ∈ X where d(x)
is the signed distance function from x to the free space in X
and de(x, rn) is the Euclidean distance from x to rn. Then the
goal-point is found by

xg = argmin
x∈X

J(x)WT
g

where Wg is a weight vector for tuning the relative importance
of the cost function terms.

2) Trajectory Optimization: The second stage of the varia-
tion planner creates a B-spline trajectory that begins at the ve-
hicle’s location and ends at the goal-point xg . This optimization
utilizes a three part cost function composed of a road-distance

cost

Jd (q) =
1

k

k∑

i=1

d (qi)
2

where q is a candidate B-spline with k waypoints and d(qi)
is, once again, the signed distance function to the road points.
Next, in order to ensure that shorter paths are preferred to equally
feasible longer ones, a relative-path-length cost is computed as

Jl (q) =

∑k
i=2 de (qi, qi−1)

de (xg, x0)

where x0 is the current vehicle location. Finally, we also seek
to minimize the maximum curvature of trajectories for ride
comfort. Since B-splines allow for analytic curvature calculation
we impose a maximum curvature cost as

Jκ (q) = max
‖σ′ × σ′′‖
‖σ′‖3

where σ is the B-spline representation of q and σ,′ σ′′ are the first
and second derivatives. Finally, the optimal trajectory is obtained
using a numerical non-linear optimization routine based on [36]
to solve

qopt = argmin
q∈X

[
Jd (q) , Jl (q) , Jκ (q)

]
WT

q

where Wq is a weight vector for tuning the relative importance
of the cost function terms. Note that the roads utilized for testing
in our rural testing environment are unmarked and often single-
width. Therefore, the cost function prioritized driving down the
center of the road. For use on roads with multiple lanes, we could
easily extend this cost function to include a cost term based on
lane boundaries instead.

IV. PERFORMANCE EVALUATION

A. Experiment Setup

1) Ground Truth: In order to train and evaluate these road
segmentation methods, we utilized a Real-Time-Kinematic
GPS Inertial Navigation System (Model: OXTS-RT3003) with
a base-station transmitting Differential GPS corrections. The
base-station provides groundtruth position and orientation with
accuracy of 2 cm with a range of 10 km.

Note that the RTK-GPS system was utilized only to obtain
ground truth, and to provide an initial position when loading
the map before the vehicle begins moving. While navigating,
the vehicle only had access to odometry measurements, and
corrected for drift entirely using the MapLite system. Fig. 4
shows an example trajectory that was driven autonomously. The
blue path is the one chosen by MapLite, while the green is the
path estimated by the odometry. Clearly, the drift in the odometry
would quickly cause the vehicle to deviate from the road without
the MapLite corrections.

2) System Integration: We integrate the MapLite system de-
scribed previously into a pipeline for fully autonomous naviga-
tion capable of operating the vehicle from an arbitrary starting
point to a user specified goal location. To execute motion plans
generated by the Variational Planner, we implement a pure
pursuit controller [38], which enables us to choose a lookahead
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Fig. 4. A comparison between the trajectory autonomously driven by MapLite
(blue) with the path estimated by odometry (green). The shaded area is the
groundtruth road surface.

TABLE I
EVALUATION OF ROAD SURFACE SEGMENTATION METHODS

distance d = 8 m that was large enough to ensure rider comfort,
while small enough to closely follow the reference path.

We set the vehicle speed using a dynamic speed controller
such that it conforms to the following constraints: 1) Maximum
Speed, 2) Maximum Linear Acceleration, 3) Maximum Linear
Deceleration, and 4) Maximum Centripetal Acceleration. The
speed controller first generates a predicted path by simulating
the pure pursuit controller forward a fixed distance, and then
analytically solves for the maximum speed that will remain
within the constraints over the length of the predicted path.

The output of the Pure Pursuit and Dynamic Speed controllers
are a command steering angle and velocity. In order to achieve
those commands using robust closed-loop control, a pair of PID
controllers was implemented. Each of these PID controllers was
tuned to obtain fast responses to speed and steering commands
while minimizing overshoot and steady state error.

B. Road Segmentation Results

We trained and evaluated three segmentation approaches: 1)
the linear SVM, (section III-B), 2) A CNN based on Spar-
seConvNet [23], and 3) another CNN based on PointNet [24].
Performing dense convolutions over sparse data is inefficient
and computationally expensive due to fill-in. Both SparseCon-
vNet and PointNet are specifically designed to achieve accuracy
typical of CNN’s on the sparse pointcloud data structure of lidar
sensors.

To utilize the groundtruth system to evaluate the road seg-
mentation methods, the vehicle was first driven manually along
the border of each road included in the test set. This included
approximately 10 km of roads in rural Massachusetts. Next,
the road boundary GPS traces were collected and used to create
a georeferenced polygon of the road boundaries. Finally, at test
time, the location of the vehicle at the time of each scan was
used to project each scan into the georeferenced map. In this
manner, the groundtruth class of each point was calculated to
enable evaluation of each road segmentation method. Table I
shows the results of evaluating the road segmentation methods

Fig. 5. A comparison between the RMSE of the estmated map before (Blue)
and after (green) topometric registration.

on a set of 500 representative laser scans comprising over 55 M
segmented points. Notice that as expected, the SVM model
is by far the fastest to segment a scan, although it does not
perform quite as well as the SparseConvNet. The vastly larger
number of parameters in the SparseConvNet network is also
a consideration as that potentially allows it to learn a more
complex variety of environments. However, that also makes
it susceptible to overfitting. For our systems level evaluations
presented in section IV-D, we chose to use the Linear SVM as
its low runtime is paramount for enabling real-time operation at
speed.

C. Registration Evaluation Results

We evaluate the topometric registration by comparing the
location of the road centerline in the registered topometric
map, to the actual road center as measured by the groundtruth.
We compute the Root-Mean-Square-Error (RMSE) along the
portion of the map that is in the sensor range as the topometric
registration only considers that portion of the map. As a baseline,
we also compute the RMSE using the prior to map registration
(e.g. based solely on the odometry estimate).

Fig. 5 shows RMSE before (blue) and after (green) topometric
registration computed during 80 s of driving. As expected the
error based solely on odometry starts out quite low. However,
due to the inherent drift in dead-reckoning measurements, it
quickly drifts to >5 m RMSE which is much too large to use
for autonomous operation. The maps corrected by topometric
registration on the other hand, have a consistently smaller RMSE
which reduces by 85.7% on average. Furthermore, it reduces
the maximum RMSE by 79.7%. The corrected maps based
on the registration alone are not sufficient for blindly follow-
ing the topmetric map because the topometric map does not
contain the detailed lane-level metric information needed for au-
tonomous driving. However, these corrected maps are sufficient
to generate a reference path that incorporates the high-level nav-
igation information into the motion planner which generates the
actual control trajectory. This incorporation of the reference path
from the topometric registration is described in section III-E.

D. System Evaluation Results

We compare the MapLite system against that of an expert
human driver to quantify performance metrics. First we chose
a standardized test route of 1.2 km in length requiring the



562 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 5, NO. 2, APRIL 2020

Fig. 6. The vehicle at the test site in rural Massachusetts. The heavily wooded
area has roads without markings or boundaries.

traversal of a total of ten intersections (3 right-turns, 4 left-turns,
and 3 straight). The test route was in a rural area near Devens,
Massachusetts with overgrown, unmarked, mostly single-lane
roads. (See Fig. 6).

Next, we utilize the GPS groundtruth to measure a baseline
traversal of the test route. Finally, both the human driver and
MapLite steer the vehicle along the test route twice. For these
runs we compute two metrics: 1) Accuracy and 2) Precision.
The accuracy metric is the RMSE of the test run compared to the
baseline. The precision metric is the root mean square deviation
(RMSD) of the second run compared to the first. This gives a
measure of the repeatability of the system independent of how
closely it navigates to the baseline.

We found that the expert human driver could navigate the test
route with an Accuracy of RMSE = 43 cm while the MapLite
system obtained RMSE = 49 cm. While this was not quite
as close to the baseline as the human driver, it is quite close
considering the 6 cm is quite a small difference with respect to
the size of typical lanes. Perhaps surprisingly, when it came to
precision, the MapLite system outperformed the human driver
with RMSD of only 17 cm while the human had 31 cm. We
attribute this to the unique ability of the autonomous system to
precisely reproduce the same trajectory, while human drivers
typically have more variability even when navigating safely.

Next, to exhaustively test the system, we also randomly
selected GPS destinations and for each one, MapLite au-
tonomously planned a route and piloted the vehicle from its
starting position to the destination. Once the vehicle came to
a stop, a new destination was input, and the process repeated.
We executed this test for a total of 16.1km consisting of 107
intersection traversals. At no point throughout this test was safety
driver intervention required, and the vehicle navigated safely to
every one of the destination points.

Finally, to determine the value of each of the components
described previously, we performed an ablation test wherein we
removed a single component and computed the accuracy and
precision measurements described previously by traversing the
test route twice more. We did this for each of the following four
ablation scenarios:

1) We remove the Topometric Registration component leav-
ing the map fixed.

2) We remove the Variational Planner, instead directly fol-
lowing the reference from the topometric map.

3) We combine both 1) and 2).

TABLE II
MAPLITE PERFORMANCE EVALUATION AND ABLATION STUDY

4) We remove the Smart Replanning, instead recomputing a
new route plan each time the map is updated.

For each test, we also recorded the required interventions/km
by the safety driver to prevent road departure. Table II compares
the performance of the Human driver, MapLite, and each of
the ablation tests. For 1) Removal of Topometric Registration,
no interventions were needed. However, the performance of the
system was worse in both accuracy and precision. While it might
seem surprising that the system can operate at all with a fixed
topometric map, it should be noted that in this system, the map
is used mostly as a source of high-level navigation information,
while the local trajectory plan is computed by the Variational
Planner.

Next, for 2) removal of the Variational Planner the driver
was required to intervene 1.3interventions/km. Furthermore,
both the accuracy and precision metrics increased. Next, for
3) both the Topometric Registration and Variational Planner
were removed. In this case however, the vehicle could not
safely navigate autonomously, and the test was aborted after 10
interventions. This is interesting because it provides evidence
that while the Topometric Registration and Variational Planner
are supplementary (the vehicle performed best when they were
both used) they are also complementary (each of them alone
could enable at least some measure of autonomous navigation).

Finally, in 4) we remove the Smart Replanning feature of
the route planner. In that test again, there were no interven-
tions required. However, both the precision and accuracy were
dramatically worse. This can be explained by the increased
processing time required to recompute the route plan each time
the map was updated, which caused a lag between when new
sensor data arrived and when the vehicle was able to respond.

E. Simulations

While the testing location in Massachusetts provided a range
of intersection topologies in which to test MapLite, we lever-
aged autonomous driving simulation to assess the performance
of MapLite in more complex traffic topologies that were not
represented at the testing site. We chose to use the CARLA [8]
autonomous driving simulator for our analysis because it in-
cludes realistic environments with a larger diversity of road
topologies. In particular, we selected the built-in Town03 urban
environment in CARLA for testing, shown in Fig. 7, which
includes a multi-lane traffic circle with multi-lane incoming
roads.

We assessed the performance of MapLite in this environment
in the same manner as we did the real-world vehicle. In this case,
our test route included both entering and exiting the traffic circle,
and the groundtruth GPS measurement came from the simulator
itself. Using this measurement as the baseline, we obtained
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Fig. 7. A traffic circle in the CARLA simulator. We used CARLA to test more
complex road topologies than were available at our test site.

a precision RMSD = 10 cm and accuracy RMSE = 38 cm.
Both of these values are actually lower than the corresponding
values for the real-world vehicle (see Table II). However, while
the simulation does include random noise, and, in fact, when
the vehicle navigates solely based on odometry it quickly drifts
from the road, the simulation does not accurately model all of
the various noise sources in a real vehicle, and thus its better
precision and accuracy are not unexpected.

V. CONCLUSION

We have demonstrated a novel autonomous navigation sys-
tem capable of using publicly sourced OpenStreetMap maps
combined with onboard sensors for autonomous navigation on
rural roads without detailed prior maps or GPS localization. This
greatly increases the areas in which autonomous driving systems
can be deployed. The presented system does not assume the
publicly sourced maps to be perfectly accurate at a metric level.
While the present work has focused on the driving task, future
work will investigate how autonomous vehicles can be used to
automatically update topometric maps.
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