Infrastructure-free NLoS Obstacle Detection for Autonomous Cars

Abstract

Current perception systems mostly require direct line of sight to anticipate and ultimately prevent potential collisions at intersections with other road users. We present a fully integrated autonomous system capable of detecting shadows or weak illumination changes on the ground caused by a dynamic obstacle in NLoS scenarios. This additional virtual sensor “ShadowCam” extends the signal range utilized so far by computer-vision ADASs. We show that (1) our algorithm maintains the mean classification accuracy of around 70% even when it doesn’t rely on infrastructure – such as AprilTags – as an image registration method. We validate (2) in real-world experiments that our autonomous car driving in night time conditions detects a hidden approaching car earlier with our virtual sensor than with the front facing 2-D LiDAR.

Publication
International Conference on Intelligent Robots and Systems (IROS)

Toronto Intelligent Systems Lab Co-authors

Igor Gilitschenski
Igor Gilitschenski
Assistant Professor