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Abstract— The growing popularity of autonomous systems
creates a need for reliable and efficient metric pose retrieval
algorithms. Currently used approaches tend to rely on nearest
neighbor search of binary descriptors to perform the 2D-
3D matching and guarantee realtime capabilities on mobile
platforms. These methods struggle, however, with the growing
size of the map, changes in viewpoint or appearance, and
visual aliasing present in the environment. The rigidly defined
descriptor patterns only capture a limited neighborhood of the
keypoint and completely ignore the overall visual context.

We propose LandmarkBoost – an approach that, in contrast
to the conventional 2D-3D matching methods, casts the search
problem as a landmark classification task. We use a boosted
classifier to classify landmark observations and directly ob-
tain correspondences as classifier scores. We also introduce
a formulation of visual context that is flexible, efficient to
compute, and can capture relationships in the entire image
plane. The original binary descriptors are augmented with
contextual information and informative features are selected
by the boosting framework. Through detailed experiments, we
evaluate the retrieval quality and performance of Landmark-
Boost, demonstrating that it outperforms common state-of-the-
art descriptor matching methods.

I. INTRODUCTION

Visual localization has become one of the core functional-
ities in robotics, being widely deployed on mobile platforms
and various mobile devices. High-frequency metric 6-DoF
pose estimates expressed in a global map frame enable or
facilitate multiple tasks such as navigation, path-planning,
obstacle avoidance, or multiagent collaboration. Frameworks
that are accurate over long periods of time are also key for
lifelong visual teach and repeat. These applications require
reliable visual localization in the presence of illumination
changes, varying weather conditions, or self-similarity of the
environment.

Existing localization systems used in robotics usually rely
on 2D-3D matching for precise metric pose estimation.
This correspondence search is based on handcrafted features,
often binary BRISK [1] or FREAK [2] descriptors, to enable
realtime queries, even on platforms with limited compu-
tational resources. Their matching performance, however,
suffers with the growing size of the database, visual alias-
ing [3], or changes in illumination and viewpoint. Intuitively,
the small image patches covered by descriptor patterns are
not expressive when reaching the city or even the building
scale. The high dimensionality makes the search particularly
challenging when covering large environments, and requires
either approximate methods [4] or projection into different
spaces [5].
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Fig. 1: Matching result for BRISK descriptors and the proposed
LandmarkBoost framework in a very self-similar environment. The
left frame is a query image, the right one is the closest map frame.
Red points in the query frame denote outliers, i.e. returned matches
that failed geometric verification. Thanks to the inclusion of context
information LandmarkBoost retrieves more geometrically consistent
matches and fewer outliers.

More recent algorithms attempt to improve the perfor-
mance of binary descriptors by checking for geometric con-
sistency or by augmenting them with additional information,
such as a broader neighborhood or semantic labels. Another
approach is to use larger patches or the entire frame and learn
the features with end-to-end methods. This leads, however,
to much higher computational demands, basically requiring
a costly, heavy and power-demanding GPU to be installed
onboard. Additionally, most state-of-the-art systems merely
consider place recognition, i.e. retrieving a topological lo-
cation such as a map image, but do not provide an exact
6-DoF pose. This does not fulfill the requirements of robotic
applications that rely on metric output.

We propose LandmarkBoost, a system that addresses the
specific needs of mobile robotics for large-scale metric
visual-based localization while keeping a limited computa-
tional cost of retrieval. Our method augments binary descrip-
tors with visual context to build a comprehensive descriptor
of the observations and improve the 2D-3D matching perfor-
mance. The augmented descriptors are passed to a boosted
classifier, effectively casting the matching problem as a
classification. The algorithm returns 2D-3D correspondences
that can be directly consumed by a 6-DoF pose estimation



engine. The new features and a retrieval engine better handle
the typical failure cases, such as visual aliasing, and improve
the matching results, as in Fig. 1. The contributions of this
work can be summarized as follows:
• We propose a visual context formulation that augments

the binary descriptors and permits to improve the raw
descriptor matching. The context is extracted from
randomly generated regions that capture co-occurring
statistics between landmarks within the entire image
plane.

• We introduce a boosted classifier that serves as an
efficient observation-to-landmark matching engine, but
also as a tool to discover useful context relationships
between landmarks. The optimized implementation of
the classifier enables support for large scale maps.

• We demonstrate that the runtime of the proposed ap-
proach is comparable to the conventional search meth-
ods for binary and projected descriptors. This confirms
our boosted classifier can be used to perform online
localization.

• We provide an extensive experimental validation that
demonstrates our method outperforms the commonly-
used binary descriptors both at 2D-3D correspondence
search and the resulting pose estimation.

II. RELATED WORK

The principle of 2D-3D matching [6] followed by a n-
point-pose (PnP) solver with RANSAC is a commonly used
toolset for metric localization in robotics and mobile devices.
The efficiency and scalability of such approaches [7] requires
limited computational resources and permits to estimate a 6-
DoF pose with high accuracy. Further optimizations to the
pipeline [8] let us use such methods in real-time, making
them particularly suitable for mobile robotics, enabling new
applications such as collaboration between agents [9].

The quality of retrieved 3D landmark matches for a query
2D keypoint directly affects the precision and recall of pose
estimation. Below, we present selected approaches that are
used to improve the raw descriptor matching output.

Voting and filtering: The raw correspondence search
result can be improved by filtering matches or reranking the
list of candidates using some additional information. In [10],
Jégou et al. introduce a Weak Geometric Consistency test
while building a list of matches that checks if scale and
angle of the retrieved matches are consistent with the query.
A related approach is presented by Zeisl et al. [11], where
spatial verification is formulated as a Hough voting problem
that works in linear time. An alternative approach is proposed
by Lynen et al. [5], where the raw descriptor matches are
used to construct a voting space to only return the matches
from high vote density regions. This method was further
improved by a probabilistic approach to voting in [12]. All
these approaches are complementary to LandmarkBoost and
can be used to further refine the candidate list returned by
our algorithm.

Image retrieval: Another group of approaches consid-
ers entire images instead of local features. Some of these

methods depend on aggregating descriptors of local features,
e.g. bag-of-words [13] or VLAD [14]. The image retrieval
approaches can then be used to model places [3] and avoid
potentially misleading features. They can also be used to
obtain a localization prior to constrain the search space for
2D-3D correspondences [15]. Another family of methods
describe the entire image without relying on keypoints,
using handcrafted or learned methods, examples including
GIST [16] and DIR [17] respectively. These algorithms,
however, rely on relatively expensive computations and large
descriptor dimensionalities. An interesting approach is pre-
sented in [18], where a classifier is used to assign an image
to one of over 26k geographic locations worldwide. It proves
viability of classification methods for place recognition.

Temporal sequences: The localization queries can also
be extended in the temporal dimension. Intuitively, us-
ing sequences of frames helps to distinguish places and
avoid mistakes, e.g. caused by visual aliasing. Sequence-
based methods can rely on traditional image comparison
measures [19] or using long short-term memory (LSTM)
networks [20]. Using ordered sets of frames, however, raises
a question about robustness to trajectory changes and view-
point variations, as small shifts of field-of-view can disrupt
the performance [21].

Landmark covisibility: Yet another group of approaches
tries to benefit from analyzing co-occurrence statistics of
groups of landmarks. The assumption is that while it might
be easy to confuse a single landmark observation, it is much
less probable when dealing with a covisibility subgraph.
Mei et al. [22] and later Stumm et al. [23], [24] present
approaches that rely on landmark covisibility statistics to find
reappearing patterns in the graph space.

Visual context and classifiers: Instead of landmark co-
visibility, we can focus just on a neighborhood of a point
feature in the image plane, called visual context. In [25],
Loquercio et al. suggest to combine point features with
a local neighborhood of a fixed size. Zhang et al. [26]
propose to build geometry-preserving visual phrases, that
capture visual word co-occurrences and most importantly
their spatial layout even including distant relationships in
the image plane. It can be considered an extension to [27]
where just local patterns were discovered. A depart from
point matching is suggested in [28] [29], where a bank of
SVMs, operating on mid-level features, is used to obtain
associations to the prior map. Unfortunately, while improving
robustness, this approach reduces the metric accuracy of the
pose estimates.

The method proposed in this paper aims to combine the
advantages of some of the aforementioned approaches. We
introduce a notion of visual context that is able to represent
even long-range co-occurring feature patterns, implicitly cap-
turing landmark covisibility instead of modelling it [23]. The
context is described by sampling random region candidates
and deciding during the training which of them contain
useful information. This approach resembles the banks of
SVMs in [28], but depends on region embeddings and simple
decision stumps. Finally, we use a multi-class classifier to



Fig. 2: Context regions are anchored to a keypoint (red point) so
that they move with the keypoint (top right). They model even
distant relationships as they can be constructed anywhere in the
image plane. They are rotated according to the gravity direction
(bottom left). Finally, they are scaled using the keypoint detector
scale to guarantee scale invariance (bottom right).

directly obtain 2D-3D matches which yields a precise metric
localization.

III. METHODOLOGY

We present LandmarkBoost – a localization algorithm that
uses a visual context and boosted classifiers to obtain 2D-3D
matches between query keyframes and prior map landmarks.
We assume the prior map to be a structure-from-motion
(SfM) model that contains covisibility information, detected
keypoints, extracted features and 3D landmark positions.
Additionally, we augment the SfM model with a concept
of visual context that takes into account reoccurring feature
patterns to improve the matching. In Section III-A we present
our approach to model the visual context. Section III-B intro-
duces the learning framework based on Jointboosting [30],
with certain specific adaptations to the task of 2D-3D match-
ing. The boosted classifiers are area-specific and need to be
pretrained offline, using both the conventional features and
visual context embeddings as input. The framework supports
a large number of 3D landmarks and lets us perform visual
context feature selection. Finally, in Section III-C, we present
an efficient approach to perform the classification online.

A. Modeling visual context

We propose to describe the visual context by means of
context regions – areas in the image plane anchored to the
point features. Those regions can be used to extract context
embeddings that will be used to build feature vectors for
context learning. The regions are common for all landmarks,
i.e. the same set is applied to all observations. Initially, a
large number of randomized regions is generated to guaran-
tee a good coverage of the possible visual context locations.
Then, we mine for the informative ones during subsequent
training.

1) Context regions: Typically, feature-point descriptors
are only extracted from the direct neighborhood of the
keypoint location. For BRISK descriptors, the pattern covers
a radius of 16 pixels. That is, however, often not sufficient
to guarantee reliable matching as many corners look alike.
Visual aliasing and identical objects appearing in many
places within one environment result in false matches and
frequent localization failures.

We propose the use of context regions anchored to the
keypoint locations. Such regions can span much larger areas
than the typical descriptor patterns. Their locations in the
image are relative to the keypoint location and expressed
in the normalized undistorted image plane to factor out the
influence of lens effects. Additionally, the regions are scaled
according to the keypoint scale to guarantee scale invariance
and they are rotated using the gravity direction projected
into the frame to ensure rotation invariance. The invariance
properties of the regions are illustrated in Fig. 2.

2) Region generation: As we do not know a priori which
parts of the keypoint neighborhood are useful for learning
the context, our approach aims to generate a large number
of regions and only later decide which are actually useful for
each landmark. We use rectangular regions within the image
plane, with varying areas, aspect ratios and locations.

While the area of regions is random, we guarantee that
each point in the image has a uniform probability of being
covered by a region of any admissible area. In other words,
we want to guarantee the region area distribution to be:

Pr(area) ∝ 1

area
(1)

Using an inverse transform sampling method, we can sample
from uniform distribution U(m,n) and generate a desired
region area using the inverse distribution function:

area = F−1(u) = exp(u) (2)

3) Region descriptors: Regions, when applied to the
image, denote an area that contains visual context infor-
mation. This information can be extracted as a feature
vector and used for context learning. Our method describes
regions using bag-of-words (BoW) embeddings [13] that
are inexpensive to compute, compact and straightforward
to interpret. The BoW vectors are computed per region,
based on keypoint descriptors within the region, and then
normalized. The visual vocabulary for BoW generation is
trained using the k-means algorithm on an unrelated dataset
using the same descriptor type.

B. Training shared classifiers

The proposed method attempts to train a classifier that
takes a query feature vector v as an input (which may con-
tain both, conventional descriptors and context embeddings)
and outputs a ranked list of matching landmarks from the
database. Our training algorithm is based on Jointboosting
by Torralba et al. [30] which satisfies several of our require-
ments:
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Fig. 3: The proposed descriptor is a concatenation of descriptors
of all context regions (blue and green) and the original keypoint
descriptor (red). The descriptor of each region is a normalized BoW
vector. In our experiments, we construct 1,000 regions and use 16
visual words to compute a BoW vector.

• the classifier is based on simple decision stumps, which
makes evaluation even for tens of thousands of classes
feasible and easy to parallelize,

• it relies on jointly training the decision stumps and
sharing them among a set of classes so even a few
observations are enough to build a reliable classifier for
a landmark,

• the classifier outputs a ranked list of candidates, which
can be further filtered,

• boosting algorithms inherently perform feature selection
that can be used to mine for reliable visual context
features.

Using a classifier instead of traditional nearest neighbor
queries comes, however, at a cost. We need to train it for
a specific set of landmarks, which means each area needs
its own classifier. If a large environment is to be covered,
the correct classifier can be preloaded based on a rough
pose guess, e.g. GPS reading as proposed in [28]. Below, we
always assume to deal with a single multi-class classifier.

1) Constructing training data: In the boosting framework,
each database 3D landmark corresponds to a class. Each
observation of a landmark c corresponds to a single training
sample vi with a label zic = 1 and ∀c′ 6=cz

i
c′ = −1.

The feature vector for an observation is a concatenation
of descriptors of all regions, each of length equal to the
BoW vocabulary size. Additionally, we augment the feature
vector with the original keypoint descriptor, see Fig. 3. By
combining the context with the point descriptor, we let the
learning algorithm decide which information reduces the
misclassification cost more at a given training stage.

2) Training procedure: The boosted classifier H , as
in [30], is a sum of M weak learners hm:

H(v, c) =

M∑
m=1

hm(v, c) (3)

where c is the class index and v the feature vector. At
every training round m, a new weak learner is added so the
H(v, c) is updated to H ′(v, c) = H(v, c) + hm(v, c). The
new classifier is expected to reduce the overall weighted
misclassification loss. The original Jointboost formulation

follows the gentleboost [31] algorithm and minimizes the
following weighted squared error J :

J =
∑
c∈C

N∑
i=1

wc
i (z

c
i − hm(vi, c))

2 (4)

The sample weight wc
i is specific for a sample i and a class

c and evolves during training. Note that the cost J is a sum
over all classes C and all N training samples. The resulting
weak learner function is a binary classifier that operates on
a sharing set S(n) and has the form as in [30]:

hm(v, c) =

{
a · δ(vfi > θ) + b, if c ∈ S(n).
kc, if c /∈ S(n).

(5)

with parameters (a, b, kc, θ) fitted in the boosting round. For
active classes c ∈ S(n) the decision stump operates on a
dimension f of the feature vector vi and is a step function
at the threshold value θ. Multiple feature dimensions f ∈ Fm

are tested in a single boosting round. For inactive classes the
value depends on a class-specific constant kc.

3) Efficient training of shared classifiers: The original
Jointboost applications included mostly object classification,
evaluated on 7- or 21-class datasets. We want to deploy the
algorithm on thousands of classes, one for each 3D landmark,
and therefore we introduce a number of optimizations to the
original pipeline.

Negative sample sets per class: In the original formulation,
all samples of class c are used as a positive set L+

c and all
samples of classes other than c are used as negative samples
for a class c. Instead, we introduce a negative L−c sample set
per class, resulting in the following cost function:

J =
∑
c∈C

(
∑
L+

c

wc
i (1− hm(vi, c))

2

+
∑
L−c

wc
i (1 + hm(vi, c))

2)
(6)

The limited size of the negative set addresses the heavy
imbalance of the number of positive and negative samples
per class compared to the original formulation. Additionally,
this change significantly reduces the complexity of training,
as we only evaluate |L+

c |+ |L−c | samples per class.
Boot-strapping negative samples: After introducing a pre-

defined negative sample set per class L−c , care needs to be
taken to guarantee this set includes hard negative samples.
We use a landmark quantizer to find them, assuming they
quantize to the same visual words as the positive samples
of the class c. This approach follows the Nearest Neighbor
Negatives concept introduced in [32]. Moreover, we do not
add any negative samples that are observations of landmarks
located nearby in the metric space – these might be du-
plicates of the same landmark that did not get associated
correctly by the SfM pipeline.

Hard negative mining: We further augment the negative
set L−c while training. We add samples of classes that were
misclassified as positives of a class c. In this way, the initial
negative sample set is getting extended by samples that refine
the classifier [33].



Efficient sharing set initialization: In [30], Torralba et al.
propose a greedy approach with a O(|C|2) complexity to
select the sharing set S(n). Given the feature dimension f ,
we believe it is possible to initialize the sharing set based
on vfi values. Classes that expose consistent behavior (e.g.
majority of values are either zeros or very large) can be
grouped together to form a candidate set S(n) that would
classify them against the rest. While initial sharing sets are
further refined, fewer iterations of the selection loop are
necessary.

Efficient sharing set update: The parameters a, b and kc

are refitted [34] at each sharing set estimation step. We
propose to incrementally update them. E.g., when adding
a class c′ to the sharing set, we perform an update of
bS = bnum/bden:

b′S(f, θ) =
bnum + bc(f, θ)w

′+
c (f, θ)

bden + w′+c (f, θ)
(7)

using precomputed values of bc(f, θ) and w′+c (f, θ). While
this change might not seem significant, we have to keep in
mind that decision stumps are fitted |Fm| · |C|2 times per
boosting round so this optimization has a high impact on the
total runtime.

Background class: The classifiers in [34], [35] never return
a “no match“ answer. We introduce a background class
that consists of samples that belong to untracked keypoints
or landmarks not present in the database. A match to the
background class means that the observation could not be
matched to any of the known landmarks and should not be
used for pose estimation. This increases the inlier ratio of
the PnP+RANSAC algorithm.

C. Localization through Classification

The shared decision stumps hm, after training as described
in Section IV-A, can be used to establish 2D-3D matches,
i.e. matches between the keypoints of the query frame and
the 3D landmarks stored in the database (a prior map). The
localization works as follows:

1) The context embedding is computed by adapting the
regions to the keypoint location and scale. For each of
the regions, a region descriptor is computed.

2) The context embeddings of each keypoint are com-
bined with its descriptor to create a feature vector v.

3) The feature vector v is classified by M shared decision
stumps:

cbest = argmax
c∈C

M∑
m=1

hm(v, c) (8)

4) The keypoint-landmark pairs are translated into 2D-3D
matches to estimate the pose using PnP and RANSAC
algorithms [36].

The classification scheme presented above evaluates the
classifier for all possible classes C. This might impair the
performance when the classifier covers large areas with many
landmarks. We propose to mitigate this issue by using an
inverted file of database landmark quantizations. Given a

Dataset Notes Distance Descriptors Landmarks Frames

CLA F Train 221m 405k 41.9k 1737
Eval 199m 465k 39.5k 1849

Zurich Old Town Train 2441m 583k 35.2k 2009
Eval 438m 243k 15.2k 565

TABLE I: Train and evaluation datasets. The datasets are public
and available with the maplab mapping framework [38].

Fig. 4: A non-matching pair of frames from the CLA F dataset.
Even though they look alike, the places are more than 20m apart.
Using just keypoint descriptors leads to a localization failure due to
the extreme visual aliasing. Visual context helps to disambiguate the
locations – small cues let us reject false positive landmark matches.

query point descriptor, we can only test the candidates that
quantize to the same visual words w, effectively reducing
the set C to a subset Cw ⊂ C.

IV. EXPERIMENTAL EVALUATION

The experimental evaluation verifies both the performance
of the training procedure, as well as landmark and pose
retrieval statistics. In Section IV-A we describe the training
procedure. Then, in Section IV-B we evaluate the landmark
retrieval, showing that the suggested approach returns more
inlier matches than the baseline methods and that the correct
matches are ranked higher. In Section IV-C we provide
a comprehensive evaluation of the pose retrieval. Finally,
Section IV-D presents a comparison of the runtime and inlier
ratio between LandmarkBoost and baseline methods.

We use the implementation of Jointboosting by
Krähenbühl et al. [37], with the improvements described in
Section III-B. The point descriptors are 384-bit BRISK [1],
extracted by the maplab [38] mapping framework. The
proposed algorithm is compared to baseline methods, namely
exact binary descriptor (BFMatcher) search implemented by
OpenCV [39] and exact projected descriptor search using
libnabo [40]. We directly feed the 2D-3D matches provided
by the search methods to a localization engine based
on PnP+RANSAC provided by opengv [36]. No match
clustering or majority voting is used to avoid distorting the
results of raw correspondence search.

The evaluation is performed on two sets of datasets: very
self-similar indoor environment (see Fig. 4) and a large-
scale outdoor dataset. The details of the datasets are given in
Table I. For each set of datasets, all but one are used to build
a database (i.e. build a kd-tree or train a classifier) and the
remaining one for evaluation. The goal is to retrieve relevant
descriptors or localize each frame of the evaluation dataset.



10-1
100
101
102
103
104
105
106
107

T
ra

in
in

g
 l
o
ss

0 500 1000 1500 2000
Iteration (# of weak learners)

−5000

0

5000

10000

15000

20000

F
e
a
tu

re
 d

im
e
n
si

o
n
 u

se
d

context
descriptor

0.0

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

o
n
@

1

Fig. 5: The training log of a 7,500-landmark classifier. The boosting
algorithm successfully reduced the training cost (blue) at each
iteration. The precision@1 (red) of the evaluation set classification
steadily grows to reach the level of 72.8%. The feature vectors con-
tain 16,000 context dimensions (1,000 regions with 16 visual words
each) and 384 descriptor dimensions. Overall, 985 context features
and 1,015 descriptor features were selected by the algorithm. Some
of the feature dimensions were used by multiple decision stumps
and can be combined to speed up the classification.

4vw 8vw 16vw 32vw 64vw 128vw

Precision@1 0.339 0.419 0.744 0.703 0.644 0.567

MRR 0.361 0.598 0.851 0.825 0.786 0.7246

TABLE II: Precision@1 and Mean Reciprocal Rank (MRR) of the
Jointboost classifier for selected numbers of visual words (vw).
The classifier was trained solely on the visual context embeddings,
without the raw descriptor part. The quality of retrieval is affected
by the BoW visual vocabulary size used to describe the regions.
Too few visual words means low context embedding uniqueness,
too many lead to quantization errors.

A. Classifier training

The classifier for the CLA F dataset was trained on 7,500
best landmarks, selected by landmark quality [41], [42]. The
training fitted 2,000 decision stumps, used 1,000 regions and
evaluated 500 features at each round. Further increasing the
region count did not bring significant improvements to the
matching performance. The training progress, that took about
8 hours, is depicted in Fig. 5. The fitted weak learners used
both keypoint descriptors as well as context embeddings.
This indicates the provided visual context contains useful
information that helps to establish 2D-3D matches.

We have also evaluated the sharing set size over the boost-
ing iterations. Intuitively, initial sharing sets should contain
about 50% of classes as such splits permit to reduce the
classification cost most efficiently. Later on, the sharing set
size is getting smaller as more detailed splits are necessary to
improve the accuracy. This expected behavior indeed takes
place when training, as depicted in Fig. 6.

All of the above classifiers as well as all the subsequent
evaluations use a BoW vocabulary that contains 16 visual
words. This has proven to be an optimal value for descriptor
retrieval as ilustrated in Table II.
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Fig. 6: Evolution of the sharing set size for 5,000 landmarks. The
size of the sharing set over the boosting rounds follows the intuition.
Initially, the largest reduction of the misclassification cost is caused
by large sharing set, approximately dividing the class set C in two.
As the training progresses, more fine-grained splits are prevalent.
The noisy nature of the sharing set size is a result of random
candidate feature dimensions Fm, greedy sharing set updates and
evolving sample weights wc

i .

Binary 384d Projected 16d Jboost Jboost+inv.file

Precision@1 0.8081 0.6578 0.8592 0.8571

MRR 0.8306 0.7163 0.9118 0.9096

TABLE III: Precision@1 and Mean Reciprocal Rank (MRR) of
descriptor retrieval quality. The first statistic indicates that the
Jointboosting-based methods have a higher probability of returning
a correct first candidate. The second one shows that the true positive
is on average ranked higher by the proposed methods.

B. Landmark retrieval

In this section, the quality of the returned 2D-3D matches
is evaluated. The precision and recall of the landmark re-
trieval has a direct influence on the quality and runtime of
subsequent pose retrieval. A large fraction of false matches
(outliers) might prevent the pose estimation algorithms to
output a valid solution within a limited time. We are therefore
interested in the precision of the first retrieved candidate, but
also the rank of the true positive.

Following the benchmarking methodology of the Caltech
Pedestrian Detection Benchmark [43], we decided to use the
average miss rate and the number of false positives per query
to evaluate the retrieval results. This choice is motivated by
the fact that in landmark retrieval only a single landmark
class is a true positive. Fig. 7 illustrates the results of the
proposed and baseline methods. It shows that significantly
fewer candidates need to be retrieved using our approach
compared to the baseline to obtain a relevant candidate.
This is confirmed by statistics in Table III, where both
the precision of the first candidate as well as the Mean
Reciprocal Rank are superior for LandmarkBoost.

Overall, our results indicate that LandmarkBoost outputs
more accurate correspondences, measured both as the relia-
bility of first reported match as well as the position of the
true positive within a ranked candidate list.

C. Pose retrieval

The aim of this section is to evaluate how the superior
landmark retrieval results reported in Section IV-B translate
into the pose retrieval, the ultimate goal of the localization
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Fig. 7: Average miss rate curve for landmark retrieval of CLA
F. The proposed jointboost-based approaches deliver significantly
reduced average miss rates when compared to the traditional
binary and projected descriptors. The difference increases with the
growing number of retrieved candidates. Slightly worse quality of
Jointboosting with an inverted file results from quantization errors.

systems. 2D-3D correspondences retrieved by the matching
algorithms are passed to the pose estimation block perform-
ing RANSAC on PnP estimates. The inlier distance threshold
and the maximum number of RANSAC iterations (500) are
fixed over all evaluations.

The retrieved poses are then evaluated against the ground-
truth values refined using a batch visual-inertial least squares
optimization as in [8]. The thresholds of 20cm and 5deg are
used as a threshold. All frames of the query datasets are used
in this evaluation.

The results are presented in Fig. 8. LandmarkBoost meth-
ods bring a boost in performance, especially for the high
recall part of the curve, where the precision of the con-
ventional methods drops rapidly. This permits to correctly
localize more frames, without sacrificing precision of the
output.

D. Matching runtime evaluation

In this section, we present an evaluation of the clas-
sification (or search) runtime. We decided to assess the
runtime with respect to the inlier ratio to illustrate the
trade-off between the matching quality and computational
requirements. As shown in Fig. 9, the proposed methods
deliver the quality that is on par with the binary descriptor
retrieval, but at a reduced query time, particularly for the
classification using a set of candidates from the quantizer
inverted file.

We believe that the runtime of Jointboost classification
can be further reduced if necessary. The classifier evaluation
consists of a series of binary tests and simple score arith-
metic. These operations can be easily parallelized, further
optimized using CPU vector instructions or even deployed
on a GPU.

V. CONCLUSIONS

In this paper, we have presented LandmarkBoost, a novel
approach for precise, metric localization. We have shown it
is possible to construct a boosted classifier that operates on a
large number of classes and delivers better performance than
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Fig. 8: The precision-recall curves and the Area Under the Curve
(AUC) for 6-DoF pose retrieval. Both proposed LandmarkBoost
methods outperform the baseline binary and projected descriptor
search approaches.
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Fig. 9: Runtime vs average inlier ratio. Mean runtime-inlier ra-
tio pairs for each method are marked with full intensity mark-
ers. The figure presents the trade-off between the quality of
landmark matches and the query time (single core of Intel i7-
7820X@3.6GHz). The proposed Jointboost method delivers inlier
ratios close to the baseline, but with about 30% shorter runtime.
Using an inverted file for classification (see Section III-C) further
reduces the computational cost of LandmarkBoost.

conventional, search based methods. The classifier incorpo-
rates not only the local point features, but also the visual
context by mining for useful information that consistently
reappears with a given landmark. This way, we achieve a
higher level of robustness against visual aliasing or appear-
ance changes compared to raw binary features. Finally, we
have presented a comprehensive evaluation that demonstrates
superior descriptor and pose retrieval quality and shows real-
time capability for robotic applications.

While this paper focuses on binary descriptors and visual
context based on neighboring keypoints, LandmarkBoost can



easily accommodate different data types while remaining
very efficient. The proposed formulation is ready to work
with other feature descriptors or region descriptors. We also
believe that extending the framework to other kinds of data,
such as semantics or object labels, might further improve
the performance when compared to conventional descriptor
search-based localization.
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T. Schneider, M. Dymczyk, M. Hutter, and R. Siegwart, “Collaborative
navigation for flying and walking robots,” in Intelligent Robots and
Systems (IROS), 2016 IEEE/RSJ International Conference on. IEEE,
2016.

[10] H. Jegou, M. Douze, and C. Schmid, “Hamming embedding and weak
geometric consistency for large scale image search,” in European
conference on computer vision. Springer, 2008.

[11] B. Zeisl, T. Sattler, and M. Pollefeys, “Camera pose voting for large-
scale image-based localization,” in Computer Vision (ICCV), 2015
IEEE International Conference on. IEEE, 2015.

[12] M. Gehrig, E. Stumm, T. Hinzmann, and R. Siegwart, “Visual place
recognition with probabilistic voting,” in ICRA, 2017.

[13] G. Csurka, C. Dance, L. Fan, J. Willamowski, and C. Bray, “Visual
categorization with bags of keypoints,” in Workshop on statistical
learning in computer vision, ECCV, vol. 1, no. 1-22. Prague, 2004.

[14] H. Jégou, M. Douze, C. Schmid, and P. Pérez, “Aggregating local
descriptors into a compact image representation,” in Computer Vision
and Pattern Recognition (CVPR), 2010 IEEE Conference on. IEEE,
2010.

[15] A. Irschara, C. Zach, J.-M. Frahm, and H. Bischof, “From structure-
from-motion point clouds to fast location recognition,” in Computer
Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference
on. IEEE, 2009.

[16] A. Oliva and A. Torralba, “Modeling the shape of the scene: A
holistic representation of the spatial envelope,” International journal
of computer vision, vol. 42, no. 3, 2001.

[17] A. Gordo, J. Almazán, J. Revaud, and D. Larlus, “Deep image re-
trieval: Learning global representations for image search,” in European
Conference on Computer Vision. Springer, 2016.

[18] T. Weyand, I. Kostrikov, and J. Philbin, “Planet-photo geolocation with
convolutional neural networks,” in European Conference on Computer
Vision. Springer, 2016.

[19] M. J. Milford and G. F. Wyeth, “Seqslam: Visual route-based naviga-
tion for sunny summer days and stormy winter nights,” in Robotics and
Automation (ICRA), 2012 IEEE International Conference on. IEEE,
2012.

[20] R. Clark, S. Wang, A. Markham, N. Trigoni, and H. Wen, “Vidloc:
A deep spatio-temporal model for 6-dof video-clip relocalization,” in
Proceedings of IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), vol. 1, no. 2, 2017.

[21] N. Sünderhauf, P. Neubert, and P. Protzel, “Are we there yet? challeng-
ing seqslam on a 3000 km journey across all four seasons,” in Proc.
of Workshop on Long-Term Autonomy, IEEE International Conference
on Robotics and Automation (ICRA). Citeseer, 2013.

[22] C. Mei, G. Sibley, and P. Newman, “Closing loops without places,” in
Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ International
Conference on. IEEE, 2010.

[23] E. S. Stumm, C. Mei, and S. Lacroix, “Building location models
for visual place recognition,” The International Journal of Robotics
Research, vol. 35, no. 4, 2016.

[24] E. Stumm, C. Mei, S. Lacroix, J. Nieto, M. Hutter, and R. Siegwart,
“Robust visual place recognition with graph kernels,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition,
2016.

[25] A. Loquercio, M. Dymczyk, B. Zeisl, S. Lynen, I. Gilitschenski, and
R. Siegwart, “Efficient descriptor learning for large scale localization,”
in Robotics and Automation (ICRA), 2017 IEEE International Confer-
ence on. IEEE, 2017.

[26] Y. Zhang, Z. Jia, and T. Chen, “Image retrieval with geometry-
preserving visual phrases,” in Computer Vision and Pattern Recog-
nition (CVPR), 2011 IEEE Conference on. IEEE, 2011.

[27] J. Yuan, Y. Wu, and M. Yang, “Discovery of collocation patterns:
from visual words to visual phrases,” in Computer Vision and Pattern
Recognition, 2007. CVPR’07. IEEE Conference on. IEEE, 2007.

[28] C. McManus, B. Upcroft, and P. Newmann, “Scene signatures: Lo-
calised and point-less features for localisation,” in Proceedings of
Robotics Science and Systems (RSS), 2014.

[29] C. Linegar, W. Churchill, and P. Newman, “Made to measure: Bespoke
landmarks for 24-hour, all-weather localisation with a camera,” in
Robotics and Automation (ICRA), 2016 IEEE International Conference
on. IEEE, 2016.

[30] A. Torralba, K. P. Murphy, and W. T. Freeman, “Sharing features:
efficient boosting procedures for multiclass object detection,” in Com-
puter Vision and Pattern Recognition, 2004. CVPR 2004. Proceedings
of the 2004 IEEE Computer Society Conference on, vol. 2. IEEE,
2004.

[31] J. Friedman, T. Hastie, R. Tibshirani, et al., “Additive logistic regres-
sion: a statistical view of boosting (with discussion and a rejoinder by
the authors),” The annals of statistics, vol. 28, no. 2, 2000.

[32] J. Philbin, M. Isard, J. Sivic, and A. Zisserman, “Descriptor learning
for efficient retrieval,” in European Conference on Computer Vision.
Springer, 2010.

[33] K.-K. Sung and T. Poggio, “Example-based learning for view-based
human face detection,” IEEE Transactions on pattern analysis and
machine intelligence, vol. 20, no. 1, 1998.

[34] A. Torralba, K. P. Murphy, and W. T. Freeman, “Sharing visual features
for multiclass and multiview object detection,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 29, no. 5, 2007.

[35] J. Shotton, J. Winn, C. Rother, and A. Criminisi, “Textonboost:
Joint appearance, shape and context modeling for multi-class object
recognition and segmentation,” in European conference on computer
vision. Springer, 2006.

[36] L. Kneip and P. Furgale, “Opengv: A unified and generalized approach
to real-time calibrated geometric vision,” in Robotics and Automation
(ICRA), 2014 IEEE International Conference on. IEEE, 2014.
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