IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED DECEMBER, 2017 1

maplab: An Open Framework for Research
in Visual-Inertial Mapping and Localization

Thomas Schneider*!, Marcin Dymczyk*l, Marius Fehr*!,
Kevin Egger', Simon Lynen!-?, Igor Gilitschenski'3, Roland Siegwart!
*contributed equally

Abstract—Robust and accurate visual-inertial estimation is
crucial to many of today’s challenges in robotics. Being able to
localize against a prior map and obtain accurate and drift-free
pose estimates can push the applicability of such systems even
further. Most of the currently available solutions, however, either
focus on a single session use case, lack localization capabilities,
or don’t provide an end-to-end pipeline. We believe that only a
complete system, combining state-of-the-art algorithms, scalable
multi-session mapping tools, and a flexible user interface, can
become an efficient research platform.

We, therefore, present maplab, an open, research-oriented
visual-inertial mapping framework for processing and manipulat-
ing multi-session maps, written in C++. On the one hand, maplab
can be seen as a ready-to-use visual-inertial mapping and local-
ization system. On the other hand, maplab provides the research
community with a collection of multi-session mapping tools that
include map merging, visual-inertial batch optimization, and loop
closure. Furthermore, it includes an online frontend that can
create visual-inertial maps and also track a global drift-free pose
within a localization map. In this paper, we present the system
architecture, five use cases, and evaluations of the system on
public datasets. The source code of maplab is freely available for
the benefit of the robotics research community.

Index Terms—Mapping, Localization, Visual-Based Navigation

I. INTRODUCTION

HE ever growing deployment of simultaneous localiza-

tion and mapping (SLAM) systems poses novel chal-
lenges for the robotics community. Availability of precise,
drift-free pose estimates both outdoors and indoors has become
a vital requirement of numerous robotics applications, such
as navigation or manipulation. The increasing popularity of
visual-inertial estimation systems created a strong incentive
to improve their robustness to viewpoint and appearance
changes (daylight, weather, seasons, etc.) or rapid motion.
Current research efforts aim to collect data using hetero-
geneous agents, build maps of larger scale, cover various
visual appearance conditions and maintain maps over a long
time horizon. Investigating these and many related challenges
requires a multi-session end-to-end mapping system that can
be easily deployed on various robotic platforms and provides
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Fig. 1: The maplab framework can build consistent visual-inertial
maps from multiple mapping sessions. Here, 4 separate sessions are
merged and jointly refined. The global map can then be used by
odometry and localization frontend to correct for any drift when
revisiting the area. The floorplan is overlayed with the landmarks
of all floors demonstrating the accuracy and consistency of the map
alignment.

ready-to-use algorithms with state-of-the-art performance. At
the same time it needs to offer high flexibility necessary for
conducting research.

Most openly available frameworks for visual and visual-
inertial SLAM either focus on a single-session case [1] or
only provide large-scale batch optimization without an online
frontend [2]. Usually, they are crafted for a very specific
pipeline without a separation between the map structure and
algorithms. They often lack completeness and will not offer
a full workflow such that a map can be created, manipulated,
merged with previous sessions and reused in the frontend
within a single framework. This impairs the flexibility of such
systems, a key for rapid development and research.

This work addresses this problem by introducing maplab',
an open visual-inertial mapping framework, written in C++.
In contrast to existing visual-inertial SLAM systems, maplab
does not only provide tools to create and localize from
visual-inertial maps but also provides map maintenance and
processing capabilities. These capabilities are offered as a set
of tools accessible in a convenient console that can easily be
extended through a plugin system. These tools involve multi-
session merging, sparsification, loop closing, dense reconstruc-
tion and visualization of maps. Additionally, maplab includes
ROVIOLI (ROVIO with Localization Integration), a mapping

'Maplab is available at: www.github.com/ethz-asl/maplab
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and localization frontend based on ROVIO [3], a patch-based
visual-inertial odometry system.

Maplab has been extensively field tested and has been
deployed on a variety of robotic platforms including micro
aerial vehicles [4], autonomous planes [5, 6], autonomous
cars [7], autonomous underwater vehicles [8], and walking
robots [9]. It has also served as a research platform for map
summarization [10-13], map quality evaluation [14], multi-
session 3d reconstruction [15], topological mapping [16],
visual localization [17-19], and decentralized mapping [20].

To the best of our knowledge, maplab is the first visual-
inertial mapping framework that integrates a wide variety of
use cases within a single system. Maplab is free, open-source,
and has already proved to be of great use for various research
and industry projects. We strongly believe that the robotics
community will harness it both as an off-the-shelf mapping
and localization solution, as well as a mapping research
testbed. The contributions of this work can be summarized
as follows:

« it introduces a general purpose visual-inertial mapping
framework using feature-based maps with multi-session
support;

o it introduces ROVIOLI, a robust visual-inertial estimator
tightly coupled with a localization system;

« it presents examples of algorithms and data structures for
modifying and maintaining maps including map merging,
sparsification, place recognition, and visualization;

« it highlights the extensibility of the system that makes it
well suited for research;

o it provides evaluation of selected components of the
framework.

II. RELATED WORK

There are several openly available visual and visual-inertial
SLAM systems. One of the earliest examples is PTAM [21],
a lightweight approach for mapping and tracking a local map
in parallel. It was originally developed for augmented reality
applications so it offers neither large-scale localization nor
any offline processing tools. More recent examples include
OKVIS [1], a visual-inertial keyframe-based estimator. This
approach tracks a local map built from recently acquired
keyframes, which minimizes the drift locally. Similarly, semi-
dense [22] and dense [23] odometry frameworks achieve high-
quality pose estimates by using photometric error formulations
instead of feature-based matching. None of these methods,
however, supports global localization against a previously
recorded map.

ORB-SLAM [24] and ORB-SLAM2 [25] are vision-based
frameworks that offer the possibility to create a map of the
environment and then reuse it in a consecutive session, which
closely relates to the workflow we propose here. In contrast
to these systems, maplab offers an offline processing toolkit
centered around a console user interface, which guarantees
high flexibility and permits users to add their own extensions
or modify the processing pipelines. We consider the ability
to merge multiple mapping sessions into a single, consistent
map and to refine it using a visual-inertial least-squares

optimization a core capability of maplab that differentiates
it from ORB-SLAM. Another difference worth emphasizing
is the online frontend of maplab, ROVIOLI. Using image
intensity within patches instead of point features guarantees
a high level of robustness, even in the presence of motion
blur [3].

Incorporating the capability to process multiple maps has
received considerable attention in the SLAM research commu-
nity with [26] being one of the earliest works incorporating
multiple maps in a hybrid metric-topological approach to
multi-session mapping. Use of anchor nodes to stitch to-
gether posegraphs from multiple mapping sessions is proposed
in [27]. Trying to establish topological associations between
maps is also proposed in [28], where maps are stored as a set
of experiences. In contrast, maplab stores a unified localization
map allowing to use a carefully selected subset of features, e.g.
based on the current appearance conditions [7].

Systems that aim to reconstruct the 3d structure from large
collections of unordered images [2, 29, 30] also contain
functionalities similar to maplab. They typically offer efficient
implementations of large-scale bundle adjustment optimization
and advanced image and feature matching techniques. They
lack, however, algorithms that process inertial data and cannot
be run directly on a robotic platform in order to provide pose
estimates online.

III. THE MAPLAB FRAMEWORK

From the user perspective, the framework consists of two

major parts:

i. The online VIO (Visual Inertial Odometry) and local-
ization frontend, ROVIOLI, that takes raw visual-inertial
sensor data. It outputs (global) pose estimates and can be
used to build visual-inertial maps.

ii. The (offline) maplab-console that lets the user apply
various algorithms on maps in an offline batch fashion. It
does also serve as a research testbed for new algorithms
that operate on visual-inertial data.

The maplab framework follows an extensible and modular
design. All software components are organized in packages,
which are built using catkin, the official build system of
ROS [31]. The C++11 standard is used throughout the frame-
work and third-party dependencies are limited to popular
and well-maintained libraries, among others Eigen [32] for
linear algebra and Ceres [33] for non-linear optimization.
Additionally, the framework provides ROS interfaces to con-
veniently input raw sensor data and output the results, such as
pose estimates for an easy deployment on a robotic systems.
The framework uses RViz as a 3d visualization tool to both
visualize the state of the online mapping algorithms and the
results of the offline processing from the maplab console.

A. Notation

Throughout this document and the source-code, we use the
notation as defined in this section. A transformation matrix
Tap € SE(3) takes a vector gp € R? from the frame
of reference Fp to the frame of reference F4. It can be
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partitioned into a rotation matrix Rap € SO(3) and a
translation vector spap € R? as:

AP| _ |BP| _ |Rap aPaB| |BP
SRR i KA R
The operator T 4p(+) is defined to transform a vector in R3

from Fp to the frame of reference 74 as ap = Tap (BP)
according to Eq. (1).

B. Workflow for multi-session mapping and localization

The typical workflow for a mapping and localization session
within the maplab system is illustrated in Fig. 2. Often, it is
beneficial to build a single localization map from multiple
mapping sessions to ensure a good spatial and temporal (i.e.
different appearances) coverage of the area. An initial, open
loop map is built in each session using ROVIOLI in VIO mode
and stored to disk. The maps can then be refined using
various (offline) tools such as loop closure detection, visual-
inertial optimization or co-registration of multiple sessions
(map merging). Detailed inspection of the maps is possible
using a large set of different visualizations, statistics and
queries. More advanced modules allow, e.g., to create a dense
representation (TSDF, occupancy, etc.) of the environment
using data from a depth sensor or from stereo.

ROVIOLI: (a)

VIO mode \ (b) maplab console
— . _ _
) ==

ROVIOLL | w2

LOC mode (c)

Fig. 2: Typical workflow in maplab: (a) In VIO mode, ROVIOLI esti-
mates the pose of an agent w.r.t. a (drifting) local frame; additionally
a map is built based on these estimates. (b) Resulting maps can be
loaded in the maplab-console where all of the available algorithms
can be applied, e.g. map alignment and merging, VI optimization,
loop closure. (c) In LOC mode, ROVIOLI can load the updated map
to track a global (drift-free) pose online.

The resulting (multi-session) map can then be exported
as a compact localization map and used by ROVIOLI (in
LOC mode) for online localization during a second visit to the
same place. Continuous online localization enables accurate
tracking of a global pose w.r.t. a known 3d structure and thus
compensates for drift in the visual-inertial state estimation.

C. maplab console: the offline user interface

The maplab framework uses a console user interface to
manipulate maps offline. Multiple maps can be loaded into
the console simultaneously, facilitating multi-session mapping
experiments. All algorithms are available through console
commands and can be applied to the loaded maps. Parameters
specific to each algorithm are set by console flags or a flag
file and can be modified at runtime. Combined with the real-
time visualization of the map in RViz, this greatly facilitates
algorithm prototyping and parameter tuning. It is possible
to combine multiple algorithms and experiment with entire
processing pipelines. Changes can be easily reverted by saving
and reloading intermediate states of a map from disk.

keyframe
VIO landmark

-- landmark
observation

--- localization
constraint

Fig. 3: Coordinate frames used in maplab and ROVIOLI: F¢: global,
gravity-aligned map frame; all missions are anchored in this frame.
Far,,: gravity-aligned frame that represents the origin of a mission k
equivalent to the origin of the VIO. Fj, : IMU frame at time stamp
k (body frame).

The console uses a plugin architecture' and automatically
detects all available plugins within the build workspace at
run time. Therefore, the integration of a new algorithm or
functionality is possible without any changes to the core
packages. For algorithms that operate on the standard visual-
inertial map datatype (see Section III-D), no interfacing work
will be necessary.

D. Map structure

The framework uses a data structure, called VI-map, for
visual-inertial mapping data. The VI-map contains the raw
measurements of all sensors and a sparse reconstruction of
the covered environment. Each map may contain multiple
missions where each is based on a single recording session.
The core structure of a mission is a graph consisting of
vertices and edges. A vertex corresponds to a state captured
at a certain point in time. It contains a state estimate (pose
T, IMU biases, velocity) and visual information from
the (multi-) camera system including keypoints, descriptors
(BRISK [34] or FREAK [35]), tracking information and im-
ages. An edge connects two neighboring vertices. While there
are a few different types of edges in maplab, the most common
type is the IMU edge. It contains the inertial measurements
recorded between the vertices that the edge connects. Visual
observations tracked by multiple vertices are triangulated as
3d landmarks. The landmark itself is stored within the vertex
that first observed it. Loop closures might link observations of
one mission to a landmark stored in another mission.

Fig. 3 illustrates the map structure and introduces the rele-
vant coordinate frames. Each mission is anchored in the global
coordinate frame F using a transformation Tz, . The poses
T, I of mission ¢ are expressed w.r.t. the mission frame Fy,.
Therefore, it suffices to manipulate the transformation T'gy,
to anchor multiple missions in a single global coordinate
system without the need for updating any vertex poses or
landmark positions.

The map structure can be serialized to the Google Protobuf
format, enabling portable file serialization and network trans-
mission. Furthermore, data-intensive objects (such as images,
dense reconstructions, etc.) can be attached to the maps using a
resource management system. Resources are linked to either a
vertex or a set of missions or simply a timestamp, and are
stored on the file system separate from the main mapping

!For more details, tutorials and documentation, please visit our wiki page:
www.github.com/ethz-asl/maplab/wiki
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data. This architecture allows for (cached) loading such (po-
tentially large) objects on demand, effectively reducing the
peak memory usage. This facilitates research in areas such as
dense reconstruction and image-based/enhanced localization
on large-scale maps that might otherwise exhaust the available
memory on certain platforms.

E. Core packages of maplab

The maplab framework incorporates implementations of
several state-of-the-art algorithms. All of them are conve-
niently accessible from the maplab console. We only briefly
highlight the ones that, in our opinion, bring a particular value
to the robotics community:

VIWLS: visual-inertial weighted least-squares optimization
with cost terms similar to [1]. The main batch optimization
algorithm of the framework is used to refine maps e.g. af-
ter initialization with ROVIOLI or after loop closures have
been established. By default, the optimization problem is
constructed using visual and inertial data, but optionally it can
include wheel odometry, GPS measurements or other types of
pose priors.

Loop closure/localization: a complete loop closure and
localization system based on binary descriptors. The search
backend uses an inverted multi-index for efficient nearest
neighbor retrieval on projected binary descriptors. The algo-
rithm is a (partial) implementation of [36].

ROVIOLI: online visual-inertial mapping and localization
frontend, see Section III-F for details.

Posegraph relaxation: posegraph optimization using edges
introduced by the loop closure system. The algorithm is similar
to [37]. Optionally, a Cauchy loss might be used to increase
the robustness against false loop closures.

aslam_cv2: a collection of computer vision data structures
and algorithms. It includes various camera and distortion
models as well as algorithms for feature detection, extraction,
tracking and geometric vision.

Map sparsification: algorithms to select the best landmarks
for localization [10, 11] and keyframe selection to sparsify
the pose graph. Useful for processing large-scale maps or for
lifelong mapping.

Dense reconstruction: a collection of dense reconstruction,
depth fusion and surface reconstruction [38] algorithms. Also
includes an interface to CMVS/PMVS2 [39]. See Section IV-E
for details.

F. ROVIOLI: online VIO and localization frontend

ROVIOLI (ROVIO with Localization Integration) is
maplab’s mapping and localization frontend which is used
to build maps from raw visual and inertial data and also
localize w.r.t. existing maps online. It is built around the
visual-inertial odometry framework ROVIO [3] and extends
it with localization and mapping capabilities. The following
two modes of operation are available: (i) VIO mode in which
a map is built based on the VIO estimates and (ii) LOC mode
where additionally localization constraints are processed to
track a (drift-free) global pose estimate w.r.t. a given map.
The localization maps are either created directly in a previous

Cam Tou, Tur, 1v control &
— ROVIO visualization
[} |
keyframes
Feature with IMU Map Builder new
Tracking P ] map
@ Frame Tar
map Z Ch
Localization £ ROVIOLI

Fig. 4: Modules and data flows within ROVIOLI (ROVIO [3] with
Localization Integration).

(single-session) of ROVIOLI or are exported from the maplab-
console. The preparation of a localization map within the
console allows for building complex processing pipelines (e.g.
multi-session maps, data selection and compression).

An overview of the (main) data flows and modules within
ROVIOLI are shown in Fig. 4. The Feature Tracking module
detects and tracks BRISK [34] or FREAK [35] keypoints.
Feature correspondences between frames are established by
matching descriptors from frame to frame. The expected
matching window is predicted based on integrated gyroscope
measurements to increase the efficiency and robustness. In
LOC mode, keyframes containing feature points and descrip-
tors are processed by the Frame Localization module to
establish 2d-3d matches against the provided localization map.
These 2d-3d matches are used to obtain a global pose estimate
Tqy, w.rt. the map’s frame of reference (see Fig. 3) using a
P3P algorithm within a RANSAC scheme. The raw global
pose estimates are fed to ROVIO where they are fused with
the odometry constraints to estimate a transformation T in
addition to the local odometry pose T'5;;. The outputs of all
modules are synchronized within the Map Builder to construct
a visual-inertial map (VI-map). The resulting map can serve
as a localization map in subsequent sessions or can be loaded
into the maplab console for further processing.

A process-internal publisher-subscriber data exchange layer
manages the data flows between all modules within ROVIOLI.
This architecture makes it easy to extend the current online
pipeline with new algorithms, e.g. for online multiagent map-
ping, semantic SLAM, or localization research.

IV. USE-CASES

This section gives an overview of five common use cases
of maplab: online mapping and localization, multi-session
mapping, map maintenance, large-scale mapping and dense
reconstruction. While maplab offers much more than that, we
believe these examples highlight the capabilities of the system,
the expected performance and its scalability.

Furthermore, we provide the related console commands
to reproduce every example. The intention is to show that
the following results can be obtained by relying solely on
the user interface, without any additional code development.
For more documentation, updated commands, datasets and
tutorials, please visit our wiki page: www.github.com/ethz-asl/
maplab/wiki .

A. Online mapping and localization with ROVIOLI

For many robotic applications it is of high importance
to have access to (drift-free) global pose estimates. Such
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Fig. 5: Evaluation of ROVIOLI on the EuRoC machine hall
dataset [40]. Top: Ground-truth positions overlayed with the ROVI-
OLI position estimates. Bottom: Position error of the visual-inertial
odometry pipeline ROVIO [3], ROVIOLI and the optimized VI-map
(VIWLS) compared to the ground truth.

capability enables, e.g., teach and repeat scenarios, robotic
manipulation and precise navigation. Within maplab, as a first
step, we use ROVIOLI to create an initial VI-map of the
desired area of operation. The sensor data can be provided
either offline in a Rosbag or online using ROS topics. Upon
completion, the VI-map is automatically loop closed, opti-
mized and optionally keyframed and summarized to obtain a
compact localization map. In a second session the localization
map can be passed to ROVIOLI to obtain drift-free global
pose estimates in the mapped area.

We evaluated the ROVIOLI estimates against plain
ROVIO [3] results and the estimates from a full-batch op-
timization on the EuRoC datasets [40]. To that end, in a first
step, we created a localization map using one of the datasets.
Then in a second step we processed a second EuRoC dataset
using both ROVIOLI (using the previously built map) and
ROVIO. The results are presented in Fig. 5 and Table I, where
we compare the groundtruth error of ROVIO, ROVIOLI,
and the full-batch optimized trajectory. These experiments
demonstrate the drift-free performance of the system and the
improvements upon the regular VIO estimation. Additionally,
Table II shows timing information of ROVIO and ROVIOLI
compared to ORB-SLAM?2 [25].

B. Multi-session mapping

In many mapping applications, it is not possible to cover
the entire environment within a single mapping session. Apart
from that, it might be desirable to capture the environment in
as many differing visual appearance conditions as possible [7].
Therefore, maplab offers tools to co-register maps from multi-
ple sessions together and jointly refine them to obtain a single,
consistent map.

Hence this use case demonstrates the process of creating a
map of a university building from four individual trajectories.
Each trajectory passes through the ground floor, staircases and

TABLE I: Global position and orientation RMSEs on EuRoC
datasets [40] for ROVIO (only VIO), ROVIOLI using one of the
datasets as a localization map and ROVIO+VIWLS that corresponds
to a full batch visual-inertial least-squares optimization (VIWLS).
Additionally, the results of ORB-SLAM?2 [25] (in batch and real-time)
are compared. ROVIO and ROVIOLI use a single camera and IMU
data whereas ORB-SLAM?2 uses a stereo camera. The localization
map for ORB-SLAM?2 has been built in SLAM mode whereas the
localization evaluation has been performed in localization mode. For
V2-medium, we were unable to build a map with ORB-SLAM?2’s
real-time mode as the estimator diverged (marked with X).

MHI1 V2-easy
*LOC: MH2 *LOC: V2-medium
position  orientation position orientation

ROVIO 0.178 m 1.49deg | 0.064m 0.90 deg
ROVIOLI* 0.082m 1.43 deg 0.057m 1.57 deg
ROVIO+
VIWLS 0.036 m 1.29deg | 0.027m 1.06 deg
ORB-SLAM2*
(batch mode) 0.084m 0.78deg | 0.121m 1.14 deg

- *
ORB-SLAM2* | ) yo4m 1334 deg X X
(real-time)

TABLE 1II: (a) Timing and CPU load for ROVIO, ROVIOLI and
ORB-SLAM2 on EuRoC MHI1 dataset processed at 20 Hz. In case
of ROVIOLI and ORB-SLAM?2 (marked with *), the estimator was
set to localize against a map built from EuRoC MH2. All reported
values have been measured on an Intel Xeon E3-1505M @2.8Ghz. A
CPU load of 800% corresponds to fully utilizing all 8 (logical) cores
of the CPU. (b) Single frame processing times for the individual
blocks of ROVIOLI. The total time does not correspond to the sum
of the individual blocks as they run in parallel. Instead, it is the time
it takes for a single frame to be fully processed.

(a) (b)

Frame ROVIOLI frame update

update CPU load ROVIO update 22.7ms
ROVIO 23 ms 56%+7.7% Feature tracking | 20.6 ms
ROVIOLI* 44 ms 105%+14.8% Localization 20.4 ms
ORB-SLAM2* Map building 3.2ms
(batch modey | O3 ™S | 162%£10.9% Total H2ms

one other floor of a building. Combined, they cover over 1,000
meters and contain about 463,000 landmarks. On such large
maps, many of the common operations such as optimization
or loop closure quickly become intractable without a careful
selection of the data. For this reason, we employ a keyframing
scheme using heuristics based on vertex distance, orienta-
tion, and landmark covisibility. The loop closure algorithm
of maplab correctly identifies the geometric transformations
between all missions and the non-linear optimization refines
the geometry. The result is a compact, geometrically-consistent
localization map of 8.2 MB ready to be used by ROVIOLI for
localization within the entire building as shown in Fig. 1.

This use case can be reproduced using the following com-
mands in the maplab console:

# Load multiple single session maps from ROVIOLI.
load_merge_all_maps --maps_folder YOUR_MAPS_FOLDER
# Keyframing and initial optimization.

kfh

optvi

# Set one mission as base, anchor the others.
set_mission_baseframe_to_known

anchor_all_missions

# Pose—graph relaxation,
relax

lc

optvi

loop-closure, optimization.
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C. Map maintenance

Large feature-based models, potentially built in multiple
sessions, easily comprise thousands of landmarks and reach
considerable storage size. However, it is not really necessary
to keep all of the landmarks to guarantee good localization
quality with ROVIOLI. Maplab offers a map summarization
functionality based on [11] that uses an integer-based opti-
mization to perform the landmark selection. The algorithm
attempts to remove the least commonly seen landmarks but
at the same time maintain a balanced coverage of the en-
vironment. Maplab also includes a keyframing algorithm to
remove redundant vertices and only keep the ones necessary
for an efficient and accurate state estimation. By removing the
vertices we also eliminate many vertex-landmark associations
that contain descriptors of considerable size. Both summariza-
tion and keyframing permit to significantly reduce the model
size without a large loss in pose estimation quality.

The map maintenance is demonstrated on a database map
built from four mapping sessions recorded on the ground floor
of the building introduced in Section IV-B. Each mapping
session covers about 90 meters and contains about 20,000
landmarks, out of which about 5,000 are considered reliable. A
fifth dataset is used as a query — we try to localize each vertex
against the database, built from the four datasets, and verify if
the position error is smaller than 50cm. We compare the recall
of localization maps that were pre-processed in different ways,
either summarized, keyframed or both.

Fig. 6 presents the influence of landmark summarization and
keyframing on the localization map size and demonstrates how
those approaches affect the localization. The results confirm
that keyframing significantly reduces the localization map size
with a rather marginal loss of localization quality. Similarly,
summarization can reduce the total amount of landmarks by
90% without grave consequences. When these methods are
combined we can reduce the map size 13 times and keep the
recall level at 51%, compared to 60% for the full map.

# Keyframe the map and sparsify landmarks to 10,000.
kfh
landmark_sparsify —--num_landmarks_to_keep=10000

D. Large-scale mapping

In this use case we would like to demonstrate the large-
scale mapping capabilities of maplab and the applicability
to a sensor other than the VI-sensor [41]. To that end we
used the publicly available Google Tango tablets, and recorded
a large-scale, multi-session map of the old town of Zurich.
We exported the raw visual-inertial data and processed it
with ROVIOLI to obtain the initial open loop maps. We then
loaded these maps into the maplab console for alignment and
optimization and applied the same tools as described in Sec-
tion IV-B. The bundle adjustment and pose-graph relaxation
was performed on a desktop computer with 32 GB RAM
overnight. An orthographic projection of the optimized VI-
map onto the map of Zurich, as well as further details about
the map can be found in Fig. 7. The figure shows that the
resulting map is consistent with the building and streets across

0.6 -’ﬁ\;\

Recall

0.2 4 —@— ILP, no keyframing

—®— ILP, keyframing
—@— Random
0.0 T T T T 1
0.0 0.2 0.4 0.6 0.8 1.0
Pruned landmark fraction
pruning fraction 0 0.5 0.75 0.9 0.95 0.98
# landmarks 18,316 8,824 4,259 1,818 899 349
(16,088)  (9,148)  (4,570)  (1,822) (906) (358)
. 34.559 29.217 24.028 17.619 12.203 6.707
map size [MB] | 39,0)  (3209) (2602) (1.837) (1214) (0.712)

Fig. 6: The localization performance and map size after ILP land-
mark summarization and keyframing+summarization (in brackets).
Keyframing removes vertices including vertex-landmark associations,
effectively making the map smaller. The original map had 6,258
vertices whereas the keyframed map contains 760. Keyframing con-
sistently reduces the recall by a few percent while summarization only
affects the quality when the pruned landmark fraction exceeds 85%.
For comparison, we provide a recall curve for a random selection of
landmarks to be removed.

Fig. 7: Large-scale, multi-session VI-map of Zurich’s old town.
Built from the raw visual-inertial data recorded in 45 sessions using
Google Tango tablets on two different days (sunny and cloudy). The
total duration of the recordings is 231 min. The final map contains
trajectories with a total length of 16.48km, 435k landmarks with
7.3M observations and has a size of 480 MB. The map is available
on the maplab wiki page for download.

most of the map with some minor inconsistencies in areas of
low coverage.
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Fig. 8: Two different dense reconstruction tools are available in maplab. Top: stereo dense reconstruction is used to compute depth maps
based on grayscale images and optimized camera poses. They are then fused in voxblox [38] to create a surface mesh. 3 EuRoC datasets [4]
(MH1-3) are combined to create an aligned and optimized VI-map. Bottom: CMVS/PMVS2 [39] reconstruction results based on a single

recording session using a multi-camera system with a RGB camera.

E. Dense reconstruction

Many applications in robotics, such as path planning, in-
spection and object detection require a more dense 3d rep-
resentation of the environment. Maplab offers several dense
reconstruction tools, which use the optimized vertex poses of
the sparse map to compute dense depth information based on
camera images attached to the VI-map.

1) Stereo dense reconstruction: In order to compute depth
maps from multi-camera systems, this tool first identifies
stereo cameras that are suitable for planar rectification. It then
utilizes a (semi-global) block matcher to compute depth maps
for every stereo pair along the trajectory. The resulting depth
maps (or point clouds) are attached to the VI-map and stored
in the resource system. The following commands assume that
the maps are already aligned, loop closed and optimized as
described in Section IV-B.

stereo_dense_reconstruction

2) TSDF-based depth fusion: Once the VI-map contains
depth information, e.g. obtained using the above described
commands or an RGB-D sensor, the globally consistent cam-
era poses of the VI-map can be utilized to create an equally
consistent global 3d reconstruction. To that end, maplab em-
ploys voxblox [38], a volumetric mapping library, for TSDF-
based depth fusion and surface reconstruction. The following
commands will insert depth maps or point cloud data into a
voxblox grid and store a surface mesh to the file system. The
top row of Fig. 8 shows the reconstruction results of three
combined EuRoC machine hall datasets [40].

create_tsdf_from _depth_resource
—-—dense_tsdf_voxel size_m 0.10
——dense_tsdf_truncation_distance_m 0.30
export_tsdf
—-dense_result_mesh_output_file YOUR_FILE

3) Export to CMVS/PMVS2: For more accurate dense re-
constructions maplab offers an export command to convert
the sparse VI-map and images to the input data format for the
open-source multi-view-stereo pipeline, CMVS/PMVS2 [39].

Even though the export of grayscale images is supported, the
best results are obtained using RGB images. The VI-map and
the resulting 3d reconstruction can be seen in the bottom row
of Fig. 8.

export_for_pmvs
—-pmvs_reconstruction_folder EXPORT_FOLDER

V. USING MAPLAB FOR RESEARCH

All the algorithms and console commands required for the
use cases in Section IV are available in maplab and constitute
most of the basic tools needed in visual-inertial mapping
and localization. Furthermore, a rich set of helper functions,
queries, and manipulation tools are provided to ease rapid
prototyping of new algorithms. The plugin architecture of
the console allows for an easy integration of new algorithms
into the system. Examples demonstrating how to extend the
framework are provided in the project’s wiki pages. We would
like to invite the community to take advantage of this research-
friendly design.

VI. CONCLUSIONS

This work presents maplab, an open framework for visual-
inertial mapping and localization with the goal of making
research in this field more efficient by providing a collection
of basic algorithms and letting researchers focus on actual
tasks. All components in maplab are written in a flexible and
extensible way such that novel algorithms that rely on visual-
inertial state estimates or localization can be integrated and
tested easily. For this reason, the framework provides an imple-
mentation of the most important tools required in mapping and
localization related research such as visual-inertial optimiza-
tion, a loop closure/localization backend, multi-session map
merging, pose-graph relaxation and extensive introspection
and visualization tools. All these algorithms are made acces-
sible from a console-based user interface where they can be
applied to single or multi-session maps. Such a workflow has
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proven to be very efficient when prototyping new algorithms
or tuning parameters.

Secondly, the framework contains an online visual-inertial
mapping and localization front-end, named ROVIOLI. It can
build new maps from raw visual and inertial sensor data and
additionally track a global (drift-free) pose in real-time if a
localization map is provided. Previous work made use of this
capability on different robotic platforms and demonstrated its
ability of accurately tracking a global pose for a multitude of
applications, including navigation and trajectory following.
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