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Abstract— A variety of end-user devices involving keypoint-

based mapping systems are about to hit the market e.g.

as part of smartphones, cars, robotic platforms, or virtual

and augmented reality applications. Thus, the generated map

data requires automated evaluation procedures that do not

require experienced personnel or ground truth knowledge of

the underlying environment. A particularly important question

enabling commercial applications is whether a given map is of

sufficient quality for localization.

This paper proposes a framework for predicting localiza-

tion performance in the context of visual landmark-based

mapping. Specifically, we propose an algorithm for predicting

performance of vision-based localization systems from different

poses within the map. To achieve this, a metric is defined

that assigns a score to a given query pose based on the

underlying map structure. The algorithm is evaluated on two

challenging datasets involving indoor data generated using a

handheld device and outdoor data from an autonomous fixed-

wing unmanned aerial vehicle (UAV). Using these, we are able

to show that the score provided by our method is highly

correlated to the true localization performance. Furthermore,

we demonstrate how the predicted map quality can be used

within a belief based path planning framework in order to

provide reliable trajectories through high-quality areas of the

map.

I. INTRODUCTION

Understanding a map’s structure and evaluating map qual-
ity is useful for a wide range of applications, particularly for
applications where constant localization or feature tracking is
crucial. Emerging technologies such as Augmented Reality
(AR) and automated mapping frameworks rely heavily on
accurate localization in order to properly overlay 3D objects
and consistently reconstruct the environment, respectively.

As a result, the goal of this work is to provide a simple and
general framework for predicting localization performance
for poses within the map. Using this framework we aim to
exploit the map’s structure by providing a means of discrimi-
nating between places where localization will succeed or fail.
Such information can then allow higher level applications to
incorporate the likelihood of robust localization in tasks such
as navigation and decision making.

However, the key challenge is defining the map quality
metric and its representation. One way to look at map quality
is through the accuracy of representation of the mapped
area. Creating reliable maps in this sense is accomplished
using approaches such as optimization over entropy [1] or
mutual information [2]. On the other hand, map quality can
be viewed as the information quality of parts of the map’s
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Fig. 1: An illustration of the predicted map quality using the
proposed algorithm. The landmarks and trajectory from the
underlying map are shown in the middle frame, with each
surrounding frame representing the expected localization
quality throughout the environment, based on the correspond-
ing pose orientation. Green cells indicate a high likelihood
of localization from the given pose, while red indicates a low
score.

structure, where information-rich parts should be easier to
localize against [3]. Using this approach to discriminate
between the good and bad parts of the map depends to a
large extent on the observer’s pose, since different views
of the same landmark can produce entirely different visual
descriptors. Therefore, in the context of this paper, we shall
refer to map quality as the localization performance of poses
within the map, simply called query poses. In this setting,
high scoring parts of the map represent poses from which
localization is expected to succeed.

The presented notion of map quality is highly relevant
for various applications, particularly in the following areas.
Firstly, active localization and active SLAM applications rely
on revisiting well mapped areas for detecting and closing
loops, i.e. recognizing a previously visited place and using
the new information to correct for accumulated errors [4].
Secondly, knowing map quality plays an important role for
multi-agent mapping, since it enables more efficient map



construction and could help save computational resources by
avoiding well mapped areas during mapping while focusing
on poorly mapped ones instead. Thirdly, map quality can
be used in path planning and navigation in order to enforce
paths to follow well mapped areas. Lastly, the map’s structure
can be sparsified while maintaining a desired quality, hence
enabling better map compression [5].

The algorithm that we propose is simple, computationally
inexpensive, and general within visual landmark-based map-
ping frameworks. In order to obtain a map quality score, we
split the algorithm into two steps. In the first step we use the
neighborhood of the query pose to estimate which landmarks
will be observed from it. We subsequently calculate each
landmarks’ contribution to the final score based on the
location of the query pose, as well as information about the
mapped poses which have observed the landmark.

Overall, this paper includes the following contributions:
• An efficient algorithm for evaluating map quality.
• A way of visualizing map quality.
• Evaluations performed on both indoor and outdoor

environments through the use of ground and flying
agents.

• A demonstration of the algorithm applied to generating
beliefs for path planning under uncertainty.

II. RELATED WORK

Active mapping and localization scenarios rely on map
quality in order to construct maps which ensure the success
of future navigation queries, e.g. finding paths within the
map. A certain notion of map quality is used in order
to satisfy the navigation requirements. A common strategy
for active mapping is to focus on parts of the map with
high expected information gain. For this purpose Davison
et al. [6] used a moving camera head, controlled to reduce
expected future measurement uncertainty. Fairfield et al. [7]
demonstrated a framework for heuristically estimating the
entropy of the map, which they use as a measure of map
quality thereafter.

Applications in robot navigation different notions of map
quality in order to represent the belief space for path plan-
ning. Each point in this space corresponds to the expected un-
certainty of a robot’s state. Navigation queries are performed
with the goal of minimizing the average state uncertainty or
the uncertainty at the goal state. Valencia et al. [8] extend the
pose SLAM algorithm to directly construct the belief space
for path planning. A drawback to the presented approach is
that there is no extrapolation in the belief space, i.e. only
the visited nodes are used for planning. Bry et al. [9] adapt
the RRT* planning algorithm, in order to incorporate belief
space information in the planning framework. They represent
the belief space as uncertainty covariances assigned to each
state. For the unvisited states, they use predefined covariances
based on the expected measurements. Chaves et al. [10] go a
step further and include stochastic measurement acquisition
variables that aim to model the probability of taking certain
measurements. They use this to define a risk measure asso-
ciated with a low probability of taking a measurement and

incorporate that into their planner. They demonstrate their
algorithm on a visual mapping application, based on the work
of Kim et al. [11], which uses visual saliency to generate
the belief space. The drawback with this method is limited
extrapolation performance, since images are required in order
to calculate visual saliency. Costante et al. [3] overcome
these issues by using an information based approach for
defining the belief space. The map quality measure of their
approach is encoded in the covariance obtained from the
dense image-to-model alignment. By synthesizing images
from the environment model, they are able to extrapolate
the uncertainty to unvisited states. However, as the focus of
the work is not on global localization, preference is given
only to feature rich areas, with no notion of their suitability
for relocalization (i.e. redetection and matching).

Dequaire et al. [12] use a different notion of map quality.
Through the use of Gaussian Processes, they predict localiza-
tion performance in a teach and repeat [13] framework. This
framework consists of two phases. The teach phase, where
the robot is operated through the desired path. During this
phase the robot builds a map of the world using a similar
procedure to the one used in our experiments. The goal of
repeat phases is to track the previously taught path. Since
a change in the environment might greatly influence the
localization performance, even a slight deviation from the
initial path might cause a loss of localization. This is an
important issue, since loss of localization can lead to con-
troller instability. Dequaire et al. thus designed a framework
which reliably estimates the localization envelope, which
gives an estimation of map quality around previously visited
paths. However, this approach fails to extrapolate orientation
information, and must be computed offline.

Our work provides a framework for evaluating map qual-
ity, which is general in the sense that localization quality can
be extrapolated to previously unvisited poses. In addition,
the approach incorporates 6DOF pose information in the
assessment of map quality. Aspects such as redetectability
of landmarks or landmark covisibility, which are often left
out of other work, are implicitly included in our algorithm.
Furthermore, the algorithm is simple in the sense that it
allows for a sparse map representation, and relies only on
the underlying map structure.

III. MAP QUALITY EVALUATION

For the proposed map quality evaluation method, we
assume a keypoint based visual map as generated by state-
of-the-art SLAM systems during potentially multiple runs
through the same environment. Localization is performed
using 2D-3D matching [14]. Our proposed method assesses
map quality by predicting whether localization is likely to
be successful from given 6DOF query poses. As no prior
observation typically exists from these query poses, we must
estimate which landmarks will be visible from each pose.
Therefore, we first compute the landmarks that have been
visible from nearby poses; and subsequently compute which
of these landmarks are also expected to be visible from the



query pose itself. Finally, this information is used to score
the localization quality of the query pose.

A. Retrieving Relevant Landmarks

In the first step, we compute a candidate list Lv , consisting
of landmarks that have been observed from neighboring
poses and a landmark specific weight. This is achieved by
considering the query pose, retrieving its K nearest neighbor
poses from previous mapping traversals and the landmarks
observed by them. Assigning weights to landmarks based
on a metric of usefulness or quality has been a topic of
extensive previous work. These landmark selection policies
have generally been information theoretic [15] incorporating
both location and feature uncertainty. But, feature uncertainty
is not necessarily a good measure of redetectability, which
is our main focus. By considering landmarks with repetition,
we implicitly include redetectability information and increase
the prior for landmarks observed from multiple nearest
neighbors. For this retrieval task, we define nearest neighbors
not merely by the proximity of observer positions, but also
incorporate their orientation by using the metric presented in
[16] where a design parameter controls the trade-off between
emphasizing position or orientation. Although this parameter
is mission-specific, a certain robustness in its choice was
observed in practice. For all of the evaluations presented, the
same metric emphasizing orientation proximity, was used.
This way of defining the distance avoids selecting observing
poses that point in an entirely different direction.

The weight of each landmark represents the number of
observers within the K neighbors. For better robustness, we
extend the combinatorial landmark selection policy used in
[14] by also removing landmarks that were rarely observed
(in our case less than 6 observations from distinct poses
within the map). The resulting method is depicted in Algo-
rithm 1. It takes the existing map M and the query pose
vq as parameters. There, the functions GetNearestNeigh-
bours, LandmarksObservedFromPose, UpdateLandmarkList
and RemoveRarelyObservedLandmarks implement the func-
tionality described above.

Algorithm 1 GetLandmarkCandidateList(vq,M)

// Initialize empty list of landmarks.
1: Lv  ;

// Find nearest neighbors.
2: nn poses GetNearestNeighbors(vq,M)

3: for p 2 nn poses do

4: l observed LandmarksObservedFromPose(p,M)

// Increment weights for landmarks in Lv .
5: Lv  UpdateLandmarkList(l observed,Lv)

6: end for

7: Lv  RemoveRarelyObservedLandmarks(Lv,M)

8: return Lv

B. Predicting Visible Landmarks

For each landmark in the candidate list we predict its visi-
bility from the query pose. This is carried out by constructing

Fig. 2: The left image shows a regular (light green) and
inflated (dark green addition) convex hull. The right image
shows the convex hull extended toward a landmark.

a convex hull over all positions from which a given landmark
was observed, inflating the convex hull, and then checking
whether the query pose lies within the resulting polygon.
Convex hull construction is visualized in Figure 4. Use of
convex hulls is based on the assumption that if a landmark
is observed from a number of given positions, it can also be
observed from within the convex hull of these positions. For
most cases this holds well, and since the algorithm essentially
defines well-localizable poses to be inside many hulls, our
approach shows satisfying robustness to this assumption.

In this work, we assume that the variance of local move-
ments in the z-axis remains small. In most of the single-agent
applications, this is a reasonable assumption since the height
of the mapping agent, either a person or a robot, typically
remains constant throughout the mission. This allows us to
simplify the implementation by projecting all poses into the
x, y-plane and using 2D convex hulls.

In order to obtain better results, convex hulls are slightly
inflated. The convex hull is extended by creating a copy
of all observer poses and placing them even closer to the
landmark and then generating a joint convex hull from both
the old and newly created poses. In the implementation, this
is carried out before the actual convex hull computation. This
inflation is motivated by the assumption that if we can detect
a landmark from a pose, then we should also be able to
detect it by moving a bit closer. The resulting polygon is
then subsequently inflated in all directions, increasing its area
by a predefined share, which is specific to the platform and
the typical operational environment. These operations play an
important role in some highly constrained environments such
as corridors, where the ordinary convex hull ends up being
almost a mere line, and extrapolation becomes impossible.
The convex hull inflation process is visualized in Figure 2.

C. Pose scoring

The entire resulting map quality procedure is visualized
in Algorithm 2. Iterating through the list of candidate land-
marks, the function ConvexHull computes the inflated convex
hull according to the methodology described in the previous
subsection, whereas the function Inside simply checks if vq

lies inside the inflated convex hull. Note that each convex
hull is weighted according to the corresponding landmark’s
observers (as described in section III-A). Essentially, the
more strongly weighted convex hulls a query pose is con-
tained within, the higher the score it will receive, as this



indicates that more landmarks are likely to be observable.
Lastly, we use the Normalize function to map the convex
hull counter to a specific range or set, e.g. [0, 5], {0, 1},
etc. We use the obtained score to represent our localization
estimate.

Algorithm 2 EvaluateMapQuality(vq,M)

// Initialize convex hull counter.
1: score 0

2: Lv  GetLandmarkCandidateList(vq,M)

3: for (l, w) 2 Lv do

4: observers PosesObservingLandmark(l)
5: Cl  ConvexHull(observers)
6: if Inside(vq, Cl) then

7: score score+ w

8: end if

9: end for

10: Normalize(score,M)

11: return score

Our implementation of the Normalize function remaps the
predicted number of visible landmarks to the range [�1, 1]
as can be seen in the x-axes of figures 3 and 5. The scaling
is done using a platform specific parameter which defines
the crossover score, i.e. the minimum score for which we
expect successful localization. The obtained score is then
limited from above by 2 times the crossover score, and
linearly scaled to [�1, 1], so that �1 corresponds to score
of 0, and 0 then corresponds to the crossover score. Thus,
in terms of binary prediction, any score below 0 is expected
to result in a failed localization attempt, while any score
above is expected to succeed. This scaling allows the scores
to fit a unified interface for higher level applications which
rely on map quality, e.g. path planning algorithms. Selecting
the crossover parameter is performed using cross-validation
on the aligned map. Alternatively, the list of all potentially
visible landmarks, for further processing and higher-level
decision making, can be obtained.

The computational complexity of the entire procedure is
highly dependent on the underlying implementation of the
map data structure. In most cases however, the driving factors
behind computational cost are the nearest neighbor search
when selecting relevant landmark candidates, along with
convex hull construction for each of the landmarks. Using
k-d trees, this search can be implemented in O(log n) in the
number of candidate poses [17]. Convex hull construction
performance is extensively studied in IV-A.

IV. EMPIRICAL RESULTS

In what follows, we first present benchmarks for convex
hull construction and discuss how the algorithm can be
adapted for online use (IV-A). We proceed by presenting
evaluations performed on indoor ground data and on outdoor
flight data (IV-B). After subsequently discussing map quality
visualization (IV-C), we demonstrate the use of the algorithm
for belief based path planning (IV-D).

In order to construct the maps, the procedure presented
in [14] was used. To demonstrate the generality of our
algorithm, we used different hardware setups and landmark
descriptors in each of the presented scenarios. In general, the
hardware used is composed of a visual and an inertial sensor,
i.e. a camera and an IMU, which enable localization without
the need of GPS or WiFi. Additionally, RANSAC was used
for outlier rejection [18]. Maps have been optimized and
aligned offline, using nonlinear least squares optimization
[19].

A. Convex hull construction

As previously mentioned, convex hull construction
presents one of the most computationally expensive parts
of the algorithm, along with the nearest neighbor search.
For that reason we additionally perform an evaluation of the
convex hull construction process. The map being considered
contains 76144 visual landmarks and 4125 camera poses, and
convex hull creation uses the popular Graham scan algorithm
[20]. Results are shown in Table I. Rows represent ordinary
convex hulls, convex hulls extended toward the landmark,
and convex hulls both extended and inflated, respectively.
The columns represents the total time in seconds needed
to construct all 76144 convex hulls, the average time in
microseconds per landmark, the average number of points
used to construct a hull and the average number of points
in a hull, respectively. The difference in time between the
methods is negligible, even when the convex hulls differ
substantially in size.

TABLE I: Convex hull construction benchmark.

CH Tot t[s] Avg t[µs] Avg #v Avg CH #v
Normal 1.408 18.495 9.17 3.509
Extended 1.439 18.898 18.34 4.837
+ Inflated 1.449 19.032 18.34 4.837

The benchmark has been performed on a single thread of a
8GB RAM and Intel Core i7 quad @2GHz per core machine
running Linux Ubuntu 14.04 LTS.

In an online application of the algorithm, we are able to
evaluate map quality at e.g. a dense grid sampling of 6DOF
poses throughout the mapped area (see Figure 1 for exam-
ple). In this case, after adding each new measurement, we
begin by generating convex hulls of the observed landmarks.
Then, we iterate through potential grid cells, and check if the
new camera pose is closer than some of the corresponding
nearest poses. If that is the case, we update the grid cell
with the new camera pose and its score contribution. Efficient
implementations of nearest neighbor search [17] and point in
polygon check [21] provide negligible complexity compared
to convex hull construction. Therefore, assuming that on
average from every new camera pose 100 landmarks can be
observed, the entire update step takes around 2ms, according
to Table I. It is important to note that even better performance
could be obtained by using a more efficient implementation
for convex hull construction, caching the created hulls, or
using multithreading.



(a) Regular run. (b) Intentionally difficult run. (c) Intentionally good run. (d) Regular run.

Fig. 3: Evaluation of the map quality prediction on the indoor ground data. Two distributions can be observed, which
correspond to successful and failed localizations, i.e. green and red points, respectively. The data is normalized, so that the
distributions can be observed. For all positive points, successful localization is predicted.

Fig. 4: The left image shows an example of convex hull
construction, while the image to the right shows overlayed
convex hulls from all the landmarks within a flight map.

B. Map quality evaluation

We carry out two experiments in order to validate our
algorithm; one performed on indoor data recorded by a
ground agent and another one on outdoor data obtained
from an UAV. For each of the experiments, a detailed map
consisting of multiple passes through the same area was
recorded to serve as the test map. This map was thoroughly
optimized, such that it can be assumed that it accurately
represents the mapped area. Apart from this test map, a
number of query trajectories were recorded in order to
evaluate the localization predictions.

For each of the query trajectories, a localization histogram
over map quality scores, as in Figure 3, was created. The
data is normalized, such that it is easier to examine the
distributions. For positive values in x we predict successful
localization, while for negative we predict failure. Points in
the bins correspond to actual localization outcomes. Green
points indicate success and red points indicate failure in
localization.

The evaluation metrics specificity and accuracy are used to
investigate the prediction performance. Specificity represents
the ratio of true negatives (negative red points), and the
sum of true negatives and false positives (all red points). By

maximizing this score, we ensure that we correctly predict
as many failed localizations as possible. This measure is
meaningful since we give preference to maintaining local-
ization at all times, and therefore favor false negatives over
false positives. In order to balance our predictions, we also
introduce an accuracy score. Accuracy simply measures the
ratio of correct predictions.

In order to run the algorithm, parameters mentioned in sec-
tion III have to be defined. Constant values for number
of nearest neighbors (10), orientation weight for distance
metric (5.0), and ratio of extension toward the landmark
(0.125) have been used across all evaluations. The convex
hull inflation ratio and the crossover score were different
across different evaluations, but constant within the same
setups.

1) Indoor ground data: For the indoor ground data eval-
uation we constructed a detailed map of a single room of
the size 5m ⇥ 3m, along with four different query trajecto-
ries. Data was acquired using Google’s Tango visual-inertial
odometry estimator, which uses FREAK [22] descriptors for
landmark representation. For every point in a single query
trajectory, we compared our expected map quality to the
actual localization result. A localization attempt is considered
to be successful if the resulting position error of the estimate
is less than 30 cm and the crossover score of 750 was used for
localization predictions. Histograms for all four evaluations
are shown in Figure 3, and the corresponding specificity
and accuracy scores are presented in Table II. We divide
the query trajectories into three categories: intentionally
difficult, regular, and intentionally good runs. These different
categories are used to evaluate the map quality prediction
in varying conditions. For the intentionally difficult run,
an effort was made to fail to localize. This was achieved
through larger movements and changing camera heights. The
opposite was done for the intentionally good runs. Regular
runs represent trajectories where the motion attempted to
simulate standard handheld use-cases.



TABLE II: Indoor ground mission results.

a) Regular b) Difficult c) Good d) Regular
Specificity 0.84 0.97794 1 0.925
Accuracy 0.74194 0.82609 0.80165 0.68362

The results indicate good performance of our prediction.
In the histograms, we can observe two distributions for
localized and failed points, showing a clear discrimination
between the two in most of the runs. The specificity and
accuracy metrics displayed in Table II also indicate good
performance. In our experiments, convex hull inflation did
not show a significant improvement to the overall results.

(a) Regular run. (b) Difficult run.

Fig. 5: Evaluation of the map quality prediction on the
outdoor flight data.

2) Outdoor flight data: In the case of the outdoor flight
evaluation, the data was acquired using a fixed wing UAV
flying six loops with a 50m radius at 100m above ground.
The six loops in the data were split into four runs which
were optimized thoroughly and used as the ground truth
test map, and two runs which were used for evaluation.
We used a different visual inertial sensor [23], combined
with BRISK [24] descriptors. A localization was considered
successful if the position error was less than 10m. In this
setting successful localizations were predicted for scores
above 600. The histogram of results is displayed in Figure 5,
while the numerical results are shown in Table III. In
Figure 5a a regular run is presented. We can again see the
two distributions with clear discrimination between them. For
Figure 5b we observe slightly worse results. It is easy to
notice that a multitude of points which successfully localized,
were assigned a low quality. This is due to the fact that
the difficult run was tested for extrapolation capabilities of
our algorithm, with deviations from the ground truth map
exceeding 10m. Due to lack of structure in those parts,
the algorithm predicted bad quality even though the system
managed to localize.

TABLE III: Flight mission results.

a) Regular b) Difficult
Specificity 0.78431 0.78918
Accuracy 0.80769 0.74567

We observed that convex hull inflation is particularly
important in this case. This is intuitive since movements in
the x, y-plane do not influence the angle of observation of the
landmark on the ground by a large factor. As a result, visual
descriptors will remain similar in that case, and the likelihood
of redetectability increases. In this specific application a 40%
inflation showed good results. Nevertheless, the results are
inferior to those from ground data evaluation. The reasons
for this are that the test map was obtained using fewer runs
over the same area. Also, landmarks are farther away, and
therefore the triangulation errors are larger which makes the
localization cutoff of 10m potentially too conservative.

C. Map quality visualization

To demonstrate map quality visualization, we use the test
map from IV-B.1. The end result of our algorithm is shown in
Figure 1. Four different map quality grids consisting of cells
of size 0.5m ⇥ 0.5m are displayed. Each grid corresponds
to a specific orientation of query poses. For the presented
visualization we use only four different orientations labeled
north, east, south and west. The color of the cell represents
the quality assigned to the corresponding pose, which con-
sists of a grid cell center position and the corresponding
orientation. The green and red regions represent poses with
high and low localization confidence, respectively. Yellow
parts represent lack of confidence and are more prone to
errors. These four map quality grids can be merged to a
single grid, as shown in Figure 6.

Fig. 6: Path planning under uncertainty, using map quality as
the belief measure. Each cell is divided into four directions,
corresponding to the quality prediction for a pose oriented in
that direction. The black parts indicate unexplored areas of
the map. The blue and purple paths were obtained for ↵ = 1

and ↵ = 0.1, respectively. One can see that the blue path
follows a route which remains in parts of the map with a
high probability of successful localization.

Adjusting the cell size allows for increasing the resolution
of map quality predictions. Another example of predicted
map quality can be seen in Figure 6, where the grid resolution
is 0.2m ⇥ 0.2m.



D. Map quality as belief for path planning

In this section, we demonstrate how our algorithm can be
used natively as a measure of belief for path planning under
uncertainty. In a similar manner to Figure 1, the mapped area
was discretized into cells of size 0.2m ⇥ 0.2m, and four
poses were evaluated at each cell location (corresponding to
four distinct orientations north, east, south, west). We define
the transition cost from state s to s

0 as:

q(s, s

0
) = distance(s, s’) + ↵(1� quality(s, s0)),

where quality(s, s0) is the quality of pose centered at s facing
s

0. This way we penalized both path length and accumulated
quality from start to goal. Different paths are demonstrated
in Figure 6 for ↵ = 1 and ↵ = 0.1.

We can see that in the case of higher penalty on the
accumulated quality, the path changes to follow the more
feature rich areas of map, where localization is more likely
to succeed. Path planning is done using the popular A* algo-
rithm, with transition cost as defined above, and Euclidean
distance as the heuristic.

V. CONCLUSIONS AND FUTURE WORK

In this paper we have presented a novel algorithm for eval-
uating and visualizing map quality in terms of localization
performance. We have evaluated the algorithm on a variety
of data and the results show satisfying performance given
the assumptions. The approach generalizes well to different
environments and conditions, as demonstrated by evaluation
on both indoor ground data, outdoor aerial data, as well
as variations in the underlying visual features and hard-
ware setup. Furthermore, the approach is able to extrapolate
localization information to previously unseen poses in the
map. Results indicate good predictive performance of the
algorithm, with both specificity and accuracy being above
75% for most of the evaluations.

A potential improvement to the algorithm would be to
remove the assumption of low variance along the z-axis,
which will be the focus of our future work. Furthermore,
our future work will include refinements to the confidence
measure of map quality estimates, improvements to observed
landmark predictions, e.g. by leveraging geometric relations
of landmarks within landmark constellations [25], and ex-
tensive evaluations on real robots.
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