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Abstract. Precise real-time information about the position and ori-
entation of robotic platforms as well as locally consistent point-clouds
are essential for control, navigation, and obstacle avoidance. For years,
GPS has been the central source of navigational information in airborne
applications, yet as we aim for robotic operations close to the terrain
and urban environments, alternatives to GPS need to be found. Fus-
ing data from cameras and inertial measurement units in a nonlinear
recursive estimator has shown to allow precise estimation of 6-Degree-
of-Freedom (DoF) motion without relying on GPS signals. While related
methods have shown to work in lab conditions since several years, only
recently real-world robotic applications using visual-inertial state estima-
tion found wider adoption. Due to the computational constraints, and
the required robustness and reliability, it remains a challenge to employ
a visual-inertial navigation system in the field. This paper presents our
tightly integrated system involving hardware and software efforts to pro-
vide an accurate visual-inertial navigation system for low-altitude fixed-
wing unmanned aerial vehicles (UAVs) without relying on GPS or visual
beacons. In particular, we present a sliding window based visual-inertial
Simultaneous Localization and Mapping (SLAM) algorithm which pro-
vides real-time 6-DoF estimates for control. We demonstrate the perfor-
mance on a small unmanned aerial vehicle and compare the estimated
trajectory to a GPS based reference solution.

1 Introduction and Related Work

Unmanned aerial vehicles, and in particular fixed-wing UAVs, are powerful
agents in scenarios where a large area needs to be scanned in a short amount
of time. In recent years the interest in employing UAVs for applications such as
industrial inspection, surveillance as well as agricultural monitoring has drasti-
cally increased due to the low acquisition and maintenance cost when compared
to conventional aircraft. Today, GPS still remains the central source of 3-degrees
of freedom (DoF) navigational information for the majority of these applications.
Its limitations in certain cases, however, have motivated the exploration of alter-
native sources of 3-DoF signals such as ultra-sonic, laser, cameras and beacons.
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Due to the low cost and weight of the sensor suite motion estimation based on
data from cameras and inertial-measurement units (IMU) has become a com-
mon choice to obtain a metric 6-DoF estimate of the body motion in real-time.
There exists a large body of robotic research focusing on probabilistic fusion of
visual and inertial data over which the publications of Nerurkar et al. [1] and
[2] give an excellent overview. All these approaches perform simultaneous local-
ization and mapping by jointly minimizing errors from reprojecting triangulated
3D-landmarks and integrating the measurements from the IMU. The currently
best performing algorithms employ either (nonlinear) optimization [1–3], filtering
[4–8] or combinations of both [9].

Optimization based approaches potentially achieve higher accuracy due to
the ability to limit linearization errors through repeated linearization of the
inherently nonlinear problem. This is particularly relevant in visual-inertial nav-
igation systems (VINS). Here the relinearization of the IMU based propagation
limits errors caused by inaccurate linearization points of IMU biases. Neverthe-
less, solving the covariance form of the problem in a recursive estimator is a
common choice due to the lower computational requirements. Only recently for-
mulations which allow “online mapping” in inverse form have shown real-time
performance [1,2]. To retain real-time calculations these algorithms approximate
the problem using one of the following approaches:

– Key-frame based concepts as proposed e.g. in [1,10]. These approaches, how-
ever, require an involved marginalization strategy and the constraints imposed
by integrating the IMU measurements can theoretically span an indefinite
duration.

– Fixed-lag smoothing or sliding window approaches that consider time succes-
sive states within a fixed time interval in the optimization problem but discard
measurements outside of the sliding window. Cf. discussion in e.g. [11] of how
this leads to loss of information regarding the variable interaction.

– Incremental smoothing and mapping methods such as iSAM2 [12] that opti-
mize over all robot states and landmarks, making use of all available correla-
tions.

In this paper we combine the last two approaches such that poses and associ-
ated landmarks older than the constant smoother lag are marginalized to ensure
a smooth pose estimate while keeping the problem size bounded. In contrast
to [13], we only employ a short term sliding window in factor graph formula-
tion. Furthermore, we use a tightly-coupled integration approach where the error
originating from pre-integrated IMU measurements as well as the reprojection
errors can be jointly optimized and thus all correlations within the optimiza-
tion window are considered [14]. Our contributions lie in the modifications to
increase robustness and to lower computational requirements which allow oper-
ation onboard a fixed-wing UAV. We furthermore discuss the hardware setup of
our modular sensor pod and thereby demonstrate accurate SLAM on a platform
with limited dimensions and payload capabilities.
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2 Methodology

This section introduces the coordinate frames, states, problem statement as well
as the proposed visual-inertial estimation framework.

2.1 Coordinate Frames

We distinguish between the camera frame FC , the body frame FB as well as the
global frame FG. Furthermore, the body frame FB is assumed to be identical to
the IMU frame FI as illustrated in Fig. 1.

2.2 State Vector

The SLAM problem seeks to estimate the robot states xR as well as the set of
landmarks xL with θ = {xR,xL}. The robot state is defined as

xR :=
[
pG�

B ,qG�
B ,vG�

B ,b�
g ,b�

a

]�
∈ R

3 × S
3 × R

9 (1)

and comprises the robot pose and velocity in the global frame as well as the
gyroscope and accelerometer biases.

2.3 SLAM as Maximum a Posteriori (MAP) Problem

We seek to maximize the joint probability p(xR,xL, z) which is equivalent to
minimizing the negative log-likelihood of the robot states xR and set of land-
marks xL given the measurements z

θ∗ := arg max
θ

p(xR,xL|z) = arg max
θ

p(xR,xL, z)

= arg min
θ

{− log p(xR,xL, z)} = arg min
θ

{−L(xR,xL, z)},
(2)

where L represents the log-likelihood function.

FB
IMU

Aptina MT9V034FC

ADIS16448

Monochrome Camera

Fig. 1. Camera and body coordinate frame of the sensor processing unit.
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2.4 Factor Graph Formulation

The SLAM problem can be transformed into a factor graph G = {F , θ, E} which
is a bipartite1 graph consisting of a set of unknown random variables to be
estimated θ and a set of factors F . In our case, the variables θ consist of the
robot states xR and the set of landmarks xL. The factors F are given by prior
knowledge or measurements z. The edges connect variable and factor nodes. The
factor graph uses a factorization of the function f(θ) =

∏
i

fi(θi) which we seek

to maximize, i.e. we want to calculate

θ∗ = arg max
θ

{f(θ)} = arg min
θ

{− log f(θ)}

= arg min
θ

{
− log

∏
i

exp
(

−1
2
||zi − hi(θi)||2Σi

)}

= arg min
θ

{
I∑

i=1

||zi − hi(θi)||2Σi

}

= arg min
θ

{
I∑

i=1

eT
i Σ−1

i ei

}
= arg min

θ

{
I∑

i=1

eT
i Wiei

}
,

(3)

where we used the fact that the measurement covariance matrix Σ is the inverse
of the information matrix W and the Mahalanobis distance is defined as ||e||2Σ :=
eT Σ−1e.

Factor and Error Term Definitions. Only the factors and error terms are
presented in this section. For the derivation of the Jacobians and information
matrices we refer to [2,16,17].

Reprojection factor. We define the reprojection factor as

freproj(xR,xL) = d(ereproj) ∝ exp
(

−1
2
||ereproj ||2W−1

reproj

)
, (4)

where d(·) denotes a cost function, ereproj is the reprojection error and Wreproj

is the corresponding information matrix. We adopt the reprojection error for-
mulation from [17]

ei,j,k
reproj(xr,xl, z) = zi,j,k − hi(TCi

Bk
TBk

G lGj ) ∈ R
2, (5)

where zi,j,k is the observation of landmark j in camera i at camera frame k in
image coordinates and hi(·) is the camera projection model. The transformation
from the body to the camera frames TC

Bk
was obtained by offline calibration and

we assume a rigid sensor rig, i.e. TC
Bk

≡ TC
B.

1 I.e. every value node is always connected to one or multiple factor nodes and vice
versa [15].



Monocular Visual-Inertial SLAM for Fixed-Wing UAVs 5

IMU factor. The IMU measurements are pre-integrated and summarized in a sin-
gle relative motion constraint connecting two time-consecutive poses as described
in [18,19]. The factor evaluates the residuals and Jacobians for the pose, velocity
and IMU biases of the previous and current state.

2.5 Sliding Window Estimator (SWE)

The outline of the sliding window estimator is presented in Algorithm1. The
most relevant parts of the framework include feature extraction, landmark ini-
tialization and graph optimization: Feature tracks are generated using a Lucas-
Kanade tracker with gyroscope-based feature prediction for speed-up and fea-
ture bucketing as well as two-point translation-only RANSAC outlier rejection
as visualized in Fig. 2a.

Landmark Initialization. Only well constrained features are used as potential
landmarks. We define the quality of a landmark observation by the number of
observations, the minimum and maximum distance and by the angle between
the incident rays:

dmin = min(dmin, ||pG
Ci

− pG
f ||2), i ∈ [0,M)

dmax = max(dmax, ||pG
Ci

− pG
f ||2), i ∈ [0,M)

αmin = min(αmin, cos−1(||pG
Ci

− pG
f ||2 · ||pG

Cj
− pG

f ||2)),

(a) The image visualizes the output of the
vision front-end: Inlier feature tracks are
shown in green. Tracks classified as outliers
by RANSAC are visualized in red - here
mainly due to the UAV’s shadow violating
the static feature assumption.

pG
C2

α0,1

pG
C1

pG
C0

pG
f

(b) Definition of well-constrained land-
marks illustrated by the incident rays of
three landmark observations. The follow-
ing heuristics are used for the UAV SKATE
datasets: Mmin = 30, dmin = 0.1 m,
dmax = 100 m, αmin = 0.5 deg.

Fig. 2. Vision front-end: Feature tracking and landmark initialization. (Color figure
online)
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where i ∈ [0,M), j ∈ [i+1,M) and M represents the number of landmark obser-
vations. The basic idea as well as the used heuristics during flight are presented
in Fig. 2b.

After triangulating the feature tracks the estimated landmark locations are
validated by back-projecting the landmarks in the frames from which they were
observed. The landmark is only inserted as a state if it lies in the visible cam-
era cone. That is, e.g. landmarks that are triangulated behind the cameras are
rejected.

Graph Optimization. Every factor and value node is associated with a mar-
ginalization strategy:

– Robot states: Marginalized after the graph update if the corresponding value
node falls outside the sliding window.

– Landmarks: Landmark nodes are marginalized before the graph update if
1. opportunistic feature: the feature track has been terminated in the previous

camera frame due to the temporal condition or the feature has not been
re-detected. Opportunistic features ensure that every frame is connected to
sufficient reprojection factors.

2. persistent feature: the feature has not been re-detected in the previous
camera frame. Persistent features are included in the factor graph to reduce
temporal drift.

A toy example of the marginalization strategy with a sliding window of N = 4
frames is presented in Fig. 3. In order to marginalize variable nodes the factors
associated with these variables are identified and removed. The marginalized
factors are replaced by the linearized factors which corresponds to a transforma-
tion into a Bayes tree. Before marginalization, the variables in the graph need to
be reordered to preserve sparsity: For this purpose we use the column approxi-
mate minimum degree heuristic (COLAMD) [20]. The graph is linearized using

xn+4xn+1

lP1

lO1 lO2

xn+2xn xn+3

Marg. after graph opt.

Marg. before graph opt.

sliding window: N = 4

Fig. 3. Marginalization strategy: At step k = n+3 the VI-node is propagated and the
graph is augmented with the new state xn+4. Due to the temporal condition (TC) the
value node xn is to be marginalized. Also, the opportunistic landmark nodes lO1 (TC)
and lO2 (not re-detected) are to be marginalized.
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Algorithm 1. Estimator pipeline (running)
1: Extract opportunistic and persistent feature tracks:

– Lucas-Kanade feature tracker
– Gyroscope measurement integration for feature prediction
– Feature bucketing
– Two-point RANSAC outlier rejection

2: Initialize landmarks:
– Check if landmark is well constrained
– Triangulate feature tracks
– Check if triangulated landmark location is in visible camera cone

3: Add landmarks to factor graph (Fig. 4, b)
4: Detect stationary phases:

– Add velocity priors if stationary phase detected (take-off, landing)
5: Update factor graph

– Apply marginalization strategy
– Linearize and optimize factor graph
– Detect and remove outliers

6: Pre-integrate the IMU measurements and propagate the current VI-node
7: Augment the factor graph with the propagated VI-node (Fig. 4, c)
8: Add the IMU factor to the factor graph (Fig. 4, c)

xn+2xn+1xn+1

lj+1lj+1 ljlj

fprior

fproj

fprior

fproj

fIMU fIMUfIMU

xnxnxn+1

lj

fprior

fproj

fIMU

xn

(b) (c)(a)

Fig. 4. Factor and value node insertion into the factor graph. (a) Initial setup at
k = n+1. (b) Insertion of landmark values and reprojection factors. (c) Pre-integration
of IMU measurements and graph augmentation.

Cholesky factorization and optimized using Levenberg-Marquardt. For marginal-
ization and optimization of the factor graph we use the Georgia Tech Smoothing
and Mapping (GTSAM) [21] framework.

Estimator Initialization. For coarse gravity alignment, the accelerometer
readings aB are averaged over a short static period before take-off. The cal-
culations are performed in axis-angle notation:

(axis, angle)G
B = (−Wg × ‖āB‖, cos−1(WT

g ‖āB‖)) (6)
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with Wg =
[
0.0 0.0 1.0

]T . As noted in [14], a purely visual SLAM problem has
six degrees of freedom (DoF). The visual-inertial problem has only four DoF
since gravity renders two additional DoF observable (around world x- and y-
axis). Based on these calculations the initial transformation TG

B0
is estimated

and the estimator switches to the routine described in Algorithm 1.

3 Experimental Results

In this section we outline the hardware setup and present the results generated
by the real-time visual-inertial navigation framework.

3.1 Sensor and Processing Unit

The sensor and processing unit used for the experiment is shown in Fig. 1: It is
equipped with an Aptina MT9V034 grayscale global shutter camera which is able
to record images at up to 60 fps with a resolution of 752×480 pixels. The MEMS
inertial measurement unit (IMU) ADIS 16448 measures angular velocities as well
as linear accelerations. The camera and IMU are integrated into an ARM-FPGA-
based Visual-Inertial (VI) sensor system [22] that time-synchronizes IMU and
camera on a hardware level. The Intel Atom CPU has access to the synchronized
visual-inertial data stream. All components are mounted on an aluminium frame
that guarantees a rigid camera-IMU transformation throughout the flight. For
more details we refer to [23]. The camera intrinsics (i.e. focal length and principal
point) as well as extrinsics (i.e. camera-IMU transformation TB

C ) are estimated
offline using the calibration tool Kalibr [14].

3.2 Platform: Aurora SKATE

For demonstrating visual-inertial navigation, the sensor & processing unit is
mounted on the small fixed-wing UAV SKATE. The light flying wing shown
in Fig. 5 was manufactured by Aurora, features two independently articulated
propulsion units and is controlled by an elevator control surface. Using thrust
vectoring it is able to rapidly transition between vertical and horizontal flight and
thus provides high agility and maneuverability. Different control modes (auto,
manual) can be set by the hand-held remote control and allow for easy and safe
operation of the vehicle. Note that the presented flight was performed in manual
mode. The original processing unit shown in Fig. 5 is replaced by an interface
specifically designed for this carrier. The interface mounts the sensor pod safely,
powers it, is rigid and easily removable at the same time.

3.3 Simultaneous State Estimation and Sparse Map Generation

This section presents the state estimates and sparse point-cloud generated by
the proposed nonlinear estimation framework based on datasets recorded by the
small unmanned aerial vehicles SKATE. The test site is characterized by flat
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(a) SKATE by Aurora in factory configura-
tion. The head piece contains batteries and two
down-looking cameras.

(b) CAD model of sensor & processing unit as
well as its power interface to SKATE. The sen-
sors consist of an IMU and a gray-scale camera.

(c) Sensor & processing unit mounted on
SKATE. The measurements from the GPS re-
ceiver are used to generate a reference trajec-
tory.

(d) Sensor & processing unit mounted on
SKATE.

Fig. 5. Hardware modifications made to SKATE to allow for accurate and time-
synchronized visual-inertial localization and mapping.

terrain with few three-dimensional structure which makes the underlying scale
estimation challenging.

Figure 6 shows the state estimates of the robot’s position, velocity and IMU
biases. The estimated altitude after the vehicle has landed is used as a first vali-
dation method. For this flight we registered a final altitude of around 3.1 m which
demonstrates the limited translational drift. Figure 7 represents the sparse point-
cloud and the estimated trajectory flown by the fixed-wing UAV. In particular
take-off and landing spot show a high point density which enables automatic
take-off and landing procedures. To obtain a further quantitative accuracy mea-
surement, an error is defined as the Euclidean distance to the GPS position
obtained from a uBlox LEA-6H sensor. For the complete trajectory, from take-
off to landing, the RMSE amounts to 14.6 m with respect to the aligned GPS
based reference trajectory. Both trajectories are shown in Fig. 8: Especially at
low altitudes, the GPS measurements show large jumps due to multi-path effects
while our proposed visual-inertial navigation system produces smooth esti-
mates, including the take-off and landing phase. The runtime evaluated for the
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Fig. 6. State estimates of robot’s position, velocity, accelerometer as well as gyroscope
biases.

Fig. 7. Side-view of the generated sparse point-cloud and the estimated trajectory
flown by the UAV. The right figure shows take-off and landing spot with increased
point-cloud density.
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(a) Top-view of the estimated trajectory
in local vision frame. The position is set
to zero during initialization. The trajectory
shows smooth estimates during take-off and
landing phase.
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(b) Top-view of the GPS trajectory in local
UTM coordinates where the first GPS mea-
surement defines the origin. Especially at
low altitudes, the GPS measurements show
large jumps due to multi-path effects.

Fig. 8. Comparison of estimated trajectory and GPS based reference trajectory.

Table 1. Runtime in ms for one frame.

Mean [ms] Std. dev. [ms]

Feature tracking∗ 19.976 7.267

Landmark initialization 0.269 0.113

State augmentation 3.455 2.497

Variable reordering (COLAMD) 0.207 0.079

Marginalization 4.321 0.935

Graph optimization 27.370 17.325

Frame processing 42.249 21.805
∗Runs in a separate thread and does not count towards total
frame processing time.

SKATE mission is shown in Table 1 and was performed on an Intel(R) Core(TM)
i7-4800MQ CPU @ 2.70 GHz. The profiling indicates that a camera stream of
23 Hz can be processed by the estimator in real-time.

4 Conclusion and Future Work

This paper presented an inverse-form visual-inertial navigation system that fuses
inertial measurements and visual cues into a sliding window estimator applied
to a small fixed-wing unmanned aerial vehicle. The state estimates of the robot’s
pose, velocity, IMU biases, and landmarks which were generated from a flight
are presented and the trajectory is compared to a GPS based reference solution.
The experiments showed that the locally consistent sparse point-cloud can be
employed for static obstacle avoidance in terms of automatic take-off and landing
for fixed-wing UAVs. Future work in the context of visual-inertial SLAM for
fixed-wing UAVs will comprise further drift reduction by means of vanishing
point detection, horizon tracking and loop closure. Furthermore, the experiments
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showed that the accuracy of the reference trajectory needs to be enhanced, e.g.
by using DGPS, to allow for a more expressive quantitative evaluation.

Acknowledgements. The research leading to these results has received funding from
the European Commission’s Seventh Framework Programme (FP7/2007-2013) under
grant agreement n°600958 (SHERPA) and was sponsored by Aurora Flight Sciences.

References

1. Nerurkar, E., Wu, K., Roumeliotis, S.: C-KLAM: constrained keyframe-based local-
ization and mapping. In: ICRA (2014)

2. Leutenegger, S., Lynen, S., Bosse, M., Siegwart, R., Furgale, P.: Keyframe-based
visual-inertial odometry using nonlinear optimization. In: IJRR (2015)

3. Li, M., Mourikis, A.I.: Optimization-based estimator design for vision-aided inertial
navigation. In: RSS (2013)

4. Mourikis, A.I., Roumeliotis, S.I.: A multi-state constraint Kalman filter for vision-
aided inertial navigation. In: ICRA (2007)

5. Huang, G.P., Mourikis, A.I., Roumeliotis, S.I.: An observability-constrained
sliding-window filter for SLAM. In: IROS (2011)

6. Hesch, J.A., Kottas, D.G., Bowman, S.L., Roumeliotis, S.I.: Camera-IMU-based
localization: observability analysis and consistency improvement. In: IJRR (2014)

7. Martinelli, A.: Visual-inertial structure from motion: observability vs. minimum
number of sensors. In: ICRA (2014)

8. Li, M., Kim, B.H., Mourikis, A.I.: Real-time motion tracking on a cellphone using
inertial sensing and a rolling-shutter camera. In: ICRA (2013)

9. Mourikis, A.I., Roumeliotis, S.I.: A dual-layer estimator architecture for long-term
localization. In: CVPRW (2008)

10. Leutenegger, S., Lynen, S., Bosse, M., Siegwart, R., Furgale, P.: Keyframe-based
visual-inertial SLAM using nonlinear optimization. In: IJRR (2014)

11. Sibley, G., Matthies, L., Sukhatme, G.S.: Sliding window filter with application to
planetary landing. In: JFR (2010)

12. Kaess, M., Johannsson, H., Roberts, R., Ila, V., Leonard, J., Dellaert, F.: iSAM2:
incremental smoothing and mapping using the Bayes tree. In: IJRR (2012)

13. Chiu, H.P., Williams, S., Dellaert, F., Samarasekera, S., Kumar, R.: Robust vision-
aided navigation using sliding-window factor graphs. In: ICRA (2013)

14. Furgale, P., Rehder, J., Siegwart, R.: Unified temporal and spatial calibration for
multi-sensor systems. In: IROS (2013)

15. Grisetti, G., Kummerle, R., Stachniss, C., Burgard, W.: A tutorial on graph-based
SLAM. In: ITSM

16. Leutenegger, S.: Unmanned solar airplanes. Ph.D. thesis, Dissertion, ETH Zürich,
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