
Foundations and Trends R© in Robotics
Vol. 4, No. 4 (2013) 225–269
c© 2016 M. Bosse, G. Agamennoni and I. Gilitschenski

DOI: 10.1561/0600000047

Robust Estimation and Applications in
Robotics

Michael Bosse
Autonomous Systems Lab, ETH Zürich

mike.bosse@mavt.ethz.ch

Gabriel Agamennoni
Autonomous Systems Lab, ETH Zürich

gabriel.agamennoni@mavt.ethz.ch

Igor Gilitschenski
Autonomous Systems Lab, ETH Zürich

igilitschenski@ethz.ch



Contents

1 Introduction 226

2 Related Work 230
2.1 M-Estimators . . . . . . . . . . . . . . . . . . . . . . . . 231
2.2 M-Estimation in Robotics . . . . . . . . . . . . . . . . . 232

3 Basic Concepts 233
3.1 Why Non-Linear Least-Squares is Hard . . . . . . . . . 234
3.2 Loss Functions and Robust Estimation . . . . . . . . . . 235
3.3 Iteratively Re-Weighted Non-Linear Least-Squares . . . 238

4 Theoretical Background on M-Estimation 241
4.1 The Influence Curve . . . . . . . . . . . . . . . . . . . . 244
4.2 Gross Error Sensitivity . . . . . . . . . . . . . . . . . . . 245
4.3 The Maximum Bias Curve . . . . . . . . . . . . . . . . . 246
4.4 The Breakdown Point . . . . . . . . . . . . . . . . . . . 248

5 Robust Estimation in Practice 249
5.1 Outlier Removal . . . . . . . . . . . . . . . . . . . . . . 249
5.2 Non-Gaussian Noise Modeling . . . . . . . . . . . . . . 254
5.3 Improved Convergence for Nonlinear Optimization . . . 257

ii



iii

6 Discussion and Further Reading 263

References 265



Abstract

Solving estimation problems is a fundamental component of numerous
robotics applications. Prominent examples involve pose estimation, point
cloud alignment, or object tracking. Algorithms for solving these estimation
problems need to cope with new challenges due to an increased use of po-
tentially poor low-cost sensors, and an ever growing deployment of robotic
algorithms in consumer products which operate in potentially unknown envi-
ronments. These algorithms need to be capable of being robust against strong
nonlinearities, high uncertainty levels, and numerous outliers. However, par-
ticularly in robotics, the Gaussian assumption is prevalent in solutions to mul-
tivariate parameter estimation problems without providing the desired level of
robustness.

The goal of this tutorial is helping to address the aforementioned chal-
lenges by providing an introduction to robust estimation with a particular
focus on robotics. First, this is achieved by giving a concise overview of the
theory on M-estimation. M-estimators share many of the convenient proper-
ties of least-squares estimators, and at the same time are much more robust
to deviations from the Gaussian model assumption. Second, we present sev-
eral example applications where M-Estimation is used to increase robustness
against nonlinearities and outliers.
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1
Introduction

Parameter estimation is the problem of inferring the value of a set of parame-
ters through a set of noisy observations. Many tasks in robotics are formulated
as an estimation problem. Most notable examples involve odometry, simulta-
neous localization and mapping (SLAM), or calibration. In case of odometry,
the parameters often involve the sequence of robot poses and locations of
landmarks that were seen (as in Leutenegger et al. (2015)). This is also true
for SLAM, where additionally a map is built that can be used for later relo-
calization. For calibration, the estimated quantites usually involve the pose of
a sensor and some of its internal parameters, e.g. the focal length of a cam-
era lens. Since observations are subject to noise, the parameter estimate will
always be afflicted with some level of uncertainty.

To model uncertainty, sensor and system noise are usually characterized
by a probability distribution, one of the most common distributions being the
Gaussian. Assuming Gaussian noise models leads to convenient simplifica-
tions due to its analytical properties and compact mathematical representa-
tion. Theoretically, the central limit theorem (CLT) is the main justification
for the use of the Gaussian distribution.1 The CLT can be applied in applica-

1The Gaussian distribution arises as the limit distribution of a sum of arbitrary independent,
identically distributed random variables with finite variance.
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tions where random variables are generated as the sum of many independent
random variables. This assumption is known as the hypothesis of elementary
errors and discussed in more detail in Fischer (2011). There are also sev-
eral computational properties that make the Gaussian distribution an attrac-
tive choice. Namely, the fact that any linear combination of Gaussian random
variables is Gaussian, and that the product of Gaussian likelihood functions
is itself Gaussian. These properties allow additive Gaussian noise to be easily
integrated into the parameter estimation framework of linear systems, where
variables are assumed to be jointly Gaussian-distributed.2

Unfortunately, there is a tendency to invoke the Gaussian in situations
where there is little evidence about whether or not it is applicable. Although
the CLT provides a justification, to some extent and in some situations, the
use of the Gaussian is rarely motivated by the nature of the actual stochas-
tic process that generates the noise. There are situations that arise in practice
which violate the CLT conditions. Many real-world systems contain strongly
non-linear dynamics that destroy Gaussianity, since a non-linear transforma-
tion of a Gaussian random variable is not generally Gaussian-distributed. In
certain applications the noise is multiplicative rather than additive, and the
Gaussian assumption is inadequate due to the nature of the process.

The success of parameter estimation hinges on the assumptions placed on
the noise distribution. Assuming a Gaussian distribution might still be a rea-
sonable approximation even in the presence of non-linearity or non-additive
noise, provided that the non-linearity is mild and the noise level is low. How-
ever, as these effects increase, there is neither a theoretical justification nor
a practical advantage for using methods that rely on this assumption. If the
Gaussian assumption is violated, then the parameter estimate may be mis-
leading, which leads to the possibility of drawing incorrect conclusions about
the parameter.

Outliers are a common type of a non-Gaussian phenomenon. An outlier
may stem from hidden factors or characteristics that are intrinsic to the prob-
lem, but are tedious or otherwise impractical to model. Systems that rely on
high-quality parameter estimates, such as robots, are especially sensitive to
outliers. In certain cases, outliers can cause the system to fail catastrophically

2There are a number of other properties motivating the use of the Gaussian distribution.
An introductory discussion of these properties can be found in Kim and Shevlyakov (2008).
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to the point where a full recovery is no longer possible. For instance, a SLAM
solution is vulnerable to false data associations, which may introduce strong
biases or even lead to divergence in filter estimates.

Least-squares estimators are particularly prone to bias, outliers, or non-
Gaussian noise. The squared-error loss is extremely sensitive, and its perfor-
mance quickly degrades in the presence of these effects. The reason for this
is that the estimator is an unbounded function of the residuals. From a prob-
abilistic perspective, the Gaussian distribution is light-tailed, i.e. the tails of
the Gaussian account for a very small fraction of the probability mass. This
essentially rules out the possibility that an observation is wrong. Therefore,
when a large discrepancy arises between the bulk of the observations and an
outlier, the parameter estimate becomes an unrealistic compromise between
the two.

The main goal of this tutorial is to make robust statistical tools acces-
sible to the robotics community. Specifically, to provide the basis necessary
for addressing the problems described above using M-estimators. Hence the
contributions of this tutorial are twofold. On one hand, it provides an in-
troduction to robust statistics that only requires preliminary knowledge of
probability theory. In particular, the notion of random variables, probability
distributions, probability density functions, and multi-variate linear regres-
sion are assumed to be known to the reader. On the other hand, this tutorial
includes examples of robotics applications where robust statistical tools make
a difference. It also includes corresponding Matlab scripts, and discusses how
robust statistics improves parameter estimation in these examples.

The remainder of this tutorial is structured as follows. Chapter 2 gives
an overview of the history and development of robust statistics and briefly
discusses introductory material and existing applications in robotics. Chap-
ter 3 starts with an overview of the challenges of non-linear least-squares es-
timation, and motivates the use of robust statistics for tackling some of these
challenges. It also introduces basic concepts such as loss functions, and iter-
atively re-weighted non-linear least-squares. Chapter 4 describes qualitative
and quantitative criteria for characterizing the robustness of M-estimators and
provides definitions of concepts such as estimator bias, the influence function
and the breakdown point are found here. Chapter 5 presents example appli-
cations that illustrate the advantage of using robust estimation in robotics.
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Specifically, robust approaches to pose graph optimization, parameter esti-
mation under non-Gaussian noise, and state-estimation in the presence of
outliers and biases. Finally, chapter 6 concludes with a discussion of further
reading and applications of robust statistics to robotics.



2
Related Work

Since the 1960s, researchers have been working on ways to make statistical
analysis procedures resilient to deviations from their idealized assumptions.
The seminal work by Huber (1964) laid the foundation of what has come to be
known as “robust statistics“, (see also Hampel (1992); Hampel et al. (1986))
an extension of classical statistics that takes into account the fact that para-
metric models are but an approximation of reality. Classical statistical analy-
ses behaves quite poorly under violations of the underlying assumptions. The
goal of robust statistics is to develop procedures that are still reliable under
small deviations, i.e. when the true distribution lies in a neighborhood of the
assumed model. Peter J. Huber was the first to develop the notion of approx-
imate validity of a parametric model and extend the theory in this direction.
In doing so, Huber introduced key concepts and derived useful practical tools
that became standards in robust statistics and its applications.

One of the most significant implications of Huber’s work was that it of-
fered a way of dealing with outliers that is more general and well-behaved
than classical approaches. The typical approach to safeguarding an estimator
against outliers is to remove them entirely, by trimming observations that de-
viate somehow from the bulk of the data. For example, the Chi-square test,
which is sometimes used as preprocessing before Kalman filtering, rejects ob-
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2.1. M-Estimators 231

servations that lie outside of the ellipsoid containing the majority, e.g. 99%,
of the probability mass of the predictive distribution. The Random Sample
Consensus (RANSAC) algorithm, discussed in Fischler and Bolles (1981),
is another approach, that discards observations considered as outliers. It is
based on randomly selecting a minimal subset of datapoints for parameter
estimation and subsequently checking whether the resulting model produces
more inliers than the best previous iteration. Unlike the methods discussed in
this work, the outcome of RANSAC is not deterministic and might therefore
be not reproducible. Additionally, rejecting observations, poses a number of
problems. First of all, there is a loss of information due to the reduced sample
size. Second, detecting outliers is inherently difficult, particularly in high-
dimensional spaces where number of data is of the same order as the number
of dimensions. Thus, it may be desirable to develop a notion of outliers that
do not fully discard a potentially outlying datapoint but merely reduce its in-
fluence within the inference procedure. Robust statistical estimators provide
ways of automatically dealing with outliers without necessarily discarding
them. Also the decision happens gradually and can therefore be revised dur-
ing iterations. These estimators, known as M-estimators, play a central role
in modern robust statistics.

2.1 M-Estimators

An M-estimator is nothing more than a maximum-likelihood estimator, al-
beit for a non-standard parametric model. M-estimators arise as solutions of
certain optimization problems (Huber, 1981; Hampel et al., 1986; Rousseeuw
and Leroy, 1987; Staudte and Sheather, 1990). The objective function, known
in this context as the loss function, is designed so that the resulting estima-
tor has a number of desirable properties. Namely, a redescending influence
curve, a small gross error sensitivity and a large breakdown point. Each of
these terms has a concrete mathematical definition, which will be given in
chapters 3 and 4. Intuitively, the influence curve describes the sensitivity of
the overall estimate with respect to the data, the gross error sensitivity quanti-
fies robustness as the maximum effect that an observation has on the estima-
tor, and the breakdown point is the maximum proportion of outliers beyond
which the estimator may develop an arbitrarily large bias.
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2.2 M-Estimation in Robotics

There is a number of tutorial-style presentations related to estimation in
robotics. In Zhang (1997), a number of different parameter estimation tech-
niques (involving robust approaches) are introduced putting a strong empha-
sis on vision applications. Stewart (1999) also considers vision applications
and restricts the focus to robust approaches. A discussion of robust estimation
with focus on signal processing is presented in Zoubir et al. (2012). A more
fundamental discussion of robust statistics and influence functions is given in
Huber (1981); Hampel et al. (1986).

An approach based on Dynamic Covariance Scaling (DCS) is proposed in
Agarwal et al. (2013a,b), It can be thought of as a generalization of classical
gating by dynamically rejecting potential outliers. Carlone et al. (2014) pro-
posed an outlier detection approach that is based on `1 relaxation and a linear
programming problem formulation. Furthermore, mixture models have also
been proposed in Olson and Agarwal (2012, 2013) to account for the fact
that errors might be non-Gaussian. This approach also provides a stochas-
tic model that considers potentially wrong loop-closures rather than a priori
classifying them. An approach that uses switchable constraints was discussed
in Sünderhauf and Protzel (2013, 2012a,b) where the topology of the pose
graph is optimized as part of the entire optimization problem. Hee Lee et al.
(2013) discusses an approach that assigns weights to each loop-closure con-
straint and then uses an expectation maximization at each iteration of the
graph-optimizer in order to assign a low weight to outlier constraints. An-
other approach using expectation maximization for robust Kalman filtering
is discussed in Ting et al. (2007). Removing the Gaussian assumption in
sparse factor graphs is discussed in Rosen et al. (2013). Agamennoni et al.
(2011) proposes a robust approach to inference of principal road paths. A
combination of RANSAC and M-Estimation was presented by Torr and Mur-
ray (1997) and applied to fundamental matrix estimation. Further applica-
tions making use of robust methods are presented in Loxam and Drummond
(2008); Kerl et al. (2013); Zach (2014).



3
Basic Concepts

Many estimation problems in robotics can be formulated as solving a non-
linear least-squares problem of residuals, r, in the form

θ̂ = arg min
θ

n∑
k=1
‖rk(θ)‖2 (3.1a)

rk(θ) = zk − hk(θ) (3.1b)

where the zk are indirect, noisy measurements of the unknown parameter θ.
The parameter is usually high-dimensional, and is observed indirectly via a
set of non-linear, low-dimensional projections hk(θ) . The problem is of-
ten solved with a non-linear optimization method such as Gauss-Newton or
Levenberg-Marquardt. In most cases it is safe to assume that, for optimization
purposes, the parameter, θ, lies in Euclidean space.1

Estimation problems such as these arise frequently in robotics, e.g. pose
graph optimization and bundle adjustment. For instance, in bundle adjust-
ment, θ is a set of landmark positions and camera configurations, the zk are

1In certain cases, e.g. when estimating poses or transformations, θ may contain elements
such as rotation matrices and quaternions. These elements lie on manifolds. In these cases,
assuming that the manifold has a differential structure, it is possible to parameterize θ locally
so that (3.1) is expressed as a function of local coordinates that lie in Euclidean space.
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image keypoint observations, and hk(θ) are the projections of the landmarks
into their corresponding images. In pose graph optimization, θ is a block vec-
tor containing the trajectory of robot poses, and the hk(θ) express pairwise
pose constraints with zk = 0. The solution to (3.1) is a least-squares estimate
of the robot pose trajectory, or the landmark positions and camera configura-
tions.

3.1 Why Non-Linear Least-Squares is Hard

Non-linear least-squares estimation is hard, especially for large problems.
When the parameter is high-dimensional, solving (3.1) can be challenging,
since the optimization method becomes computationally expensive and prone
to numerical instability and local minima. Large-scale numerical solvers
(Dellaert and Kaess, 2006; Agarwal et al., 2010; Kummerle et al., 2011) lever-
age the structure and sparsity of the optimization problem to maximize com-
putational efficiency. Subspace methods (Eriksson and Wedin, 2004; Gratton
et al., 2007; Maye et al., 2013) improve numerical stability by searching along
directions in parameter space where the sum-of-squares error function is nu-
merically well-conditioned. Local minima are much harder to deal with, and
there is yet no general approach that guarantees finding the global optimum,
from any starting point that at the same time scales well with dimension.

On the other hand, least-squares estimators are not robust. This is not a
fault in the estimator itself, but rather the least-squares criterion. The sum-
of-squares error metric is overly sensitive to data contamination and model
misspecification —this stems from the fact that the estimator is an unbounded
function of the residuals. Hence the accuracy degrades quickly when the data
contain outliers, or the noise is non-Gaussian. In fact, the least-squares esti-
mator is so sensitive that a single outlier is enough to introduce an arbitrarily
large bias in the final solution.2

2It is important to note that, even under correct model assumptions, the non-linear least-
squares estimator is generally biased. That is, the expected value of the estimator is differ-
ent from the true value of the parameter. On the upside, though, the non-linear least-squares
estimator is weakly consistent, meaning that, under certain mild conditions the sequence of
estimates converges in probability to the true parameter in the limit n → ∞. In other words,
as the number n of data increases, the probability that the estimated parameter and the true
parameter are arbitrarily close becomes asymptotically equal to one.
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Least-squares’ sensitivity can also be interpreted from a statistical per-
spective. From (3.1), the sum-of-squares error is equal, up to an additive con-
stant, to the negative log-likelihood of a Gaussian distribution. Hence the
least-squares estimator is the maximum-likelihood estimator under a Gaus-
sian model,

Zk ∼ N (hk(θ) , I) (3.2)

where N (µ,Σ) stands for a Gaussian distribution with mean µ and covari-
ance Σ, and Zk denotes a random variable.3 In other words, it solves

arg max
θ

n∏
k=1
N (zk; hk(θ) , I) (3.3)

which, as N (zk; hk(θ) , I) denotes the p.d.f. of a N (hk(θ) , I) distribution
evaluated at zk, is equivalent to

arg max
θ

exp
(
−1

2

n∑
k=1
‖zk − hk(θ)‖2

)
.

Choosing the covariance Σ = I is merely for simplified presentation. It,
however, is not a restrictive assumption as the rescaling of the covariance
matrix may be encoded as part of hk(θ).

Since the Gaussian distribution places most of its probability mass in a
small region around the mean, it cannot account for outliers. That is, it is
unable to explain realizations of Zk that are far away from the mean hk(θ) ,
and thus does not conform to the Gaussian model.4

3.2 Loss Functions and Robust Estimation

M-estimators aim to reduce the sensitivity of least-squares by replacing the
sum-of-squared error with another, more robust criterion. Namely, an M-
estimator replaces (3.1) with

min
θ

n∑
k=1

ρ
(
‖rk(θ)‖2

)
(3.4)

3Note that a clear distinction is made between the random variables Zk, and their realiza-
tions zk.

4For example, under a one-dimensional Gaussian model, an outlier 5 standard deviations
away from the mean has less than one in a million chances of occurring. Although the proba-
bility is non-zero, it is unrealistically small.
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where ρ : t 7→ ρ (t) ≥ 0 is a non-negative, non-decreasing function, usually
with a unique minimum at t = 0. Note that t is the squared magnitude of
the residual. This function is called the loss function, and (3.4) is a robust
non-linear least-squares problem.5

Intuitively, the role of the loss function is to reduce the impact of outliers
on the solution of (3.4). For example, the Huber loss function, defined with
the scale parameter s as

ρ (t) =

t t ≤ s
2
√
st− s t > s

with s > 0

is linear for t close to zero, and sub-linear for t far away from zero. The
idea is that, if a squared error is extremely large, then it is most likely an
outlier. Instead of discarding it, the Huber loss reduces the penalty to avoid
biasing the estimator. This is in contrast to least-squares, where ρ (t) = t and,
therefore, larger and larger errors receive greater and greater penalties. Some
common loss functions (and their derivatives, whose role will be explained
subsequently) are listed in Table 3.1 and visualized in Figure 3.1.

The “M” in the term “M-estimator” stands for maximum-likelihood-type
estimator Huber (1964). This name stems from the fact that an M-estimator
can be loosely interpreted as a maximum-likelihood estimator, albeit for an
unknown, non-Gaussian model. Agamennoni et al. (2015) showed that, in
certain cases, this model follows an elliptical distribution Fang et al. (1987).
In these cases an M-estimator is a maximum-likelihood estimator under an
elliptical model,

Zk ∼ E (hk(θ) , I, ρ) (3.5)

where E (µ,Σ, ρ) denotes an elliptical distribution with location µ, scale Σ
and loss function ρ. That is, it solves

arg max
θ

n∏
k=1

fk(zk) ∝ exp
(
−1

2 min
θ

n∑
k=1

ρ
(
‖zk − hk(θ)‖2

))
(3.6)

5There are different definitions of the loss function in the literature. Classic approaches,
which deal with one-dimensional data, define the loss as a symmetric function of the residual
rk. For generality, in this tutorial the loss is defined as a function of the squared error, i.e. the
squared of the residual, r2

k, which in the case of multi-dimensional measurements simply
becomes the squared norm ‖rk‖2.
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Table 3.1: Commonly used M-estimators

ρ (t) ρ′(t)

Gaussian t 1

Laplace 2
√
st

√
s

t

Huber

t t ≤ s
2
√
st− s t > s

min
{

1,
√
s

t

}

“Fair” 2s
(√

t

s
− ln

(
1 +

√
t

s

))
1

1 +
√
t/s

Cauchy s ln
(

1 + t

s

) 1
1 + t/s

Geman-McClure s

(
1− 1

1 + t/s

) 1
(1 + t/s)2

Welsch s (1− exp (−t/s)) exp (−t/s)
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Figure 3.1: Loss curves for the M-estimators listed in table 3.1. To give a better intuition for
the difference compared to least-squares, we maintained the squaring within the loss curve.
That is, this plot shows ρ(t2).
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compare these last two equations with equations (3.2) and (3.3) in section 3.1.
See Agamennoni et al. (2015) for details on when the equivalence between
M-estimators and elliptical distributions holds.

3.3 Iteratively Re-Weighted Non-Linear Least-Squares

An M-estimator maps a set of data zk and a loss function ρ to a parameter
estimate θ̂, which solves the M-estimation problem (3.4). The M-estimation
problem inherits many of the challenges of the least-squares problem. How-
ever, the solution, once found, is much more robust to deviations from ideal-
ized model assumptions. Qualitative and quantitative robustness will be dis-
cussed in more detail in chapter 4. The remainder of this chapter will briefly
describe two widely used non-linear optimization methods for tackling (3.4).
Namely, the Gauss-Newton and Levenberg-Marquardt methods. A thorough
derivation of these methods is outside the scope of this tutorial. For an ex-
cellent introduction to numerical optimization, refer to Nocedal and Wright
(1999).

Broadly speaking, there are essentially two families of iterative methods
for finding a local minimum of a non-linear function such as (3.1) and (3.4).
These are: line search methods and trust region methods. The main difference
between them lies in their notion of “locality“ and the way they enforce it,
either by explicitly controlling the step size, or by regularizing the objective
function. Gauss-Newton and Levenberg-Marquardt, respectively, belong to
the families of line search and trust region methods.

Both types of methods solve (3.4) in an iterative fashion by repeatedly
refining an estimate of the parameter θ. Starting from an initial guess, the
estimate is updated by applying a sequence of update steps

θ ← θ + α∆θ (3.7)

where ∆θ is the update step at a given iteration, and α is the step size.
The update step is computed by solving a linearized version of the origi-
nal, non-linear problem around the current estimate. Specifically, by solving
a weighted least-squares problem of the form

min
∆θ

1
2 (J∆θ − r)>W (J∆θ − r) + λ

2 ‖∆θ‖2 (3.8)
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where r and J are the residual vector and Jacobian matrix, respectively, and
W is a diagonal weight matrix. The scalar λ is a damping constant, and the
step size α is chosen so that θ + α∆θ leads to a sufficiently large decrease
in the overall loss. The vector and matrices appearing in (3.8) and (3.10) are
given by

r =


r1
...

rn

 J =


J1
...

Jn

 W =


w1I · · · 0

...
. . .

...
0 · · · wnI


where rk is the residual, and Jk and wk are, in that order, the Jacobian and
the weight for observation zk,

Jk(θ) = ∂hk
∂θ

(θ) (3.9a)

wk(θ) = ρ′
(
‖rk(θ)‖2

)
(3.9b)

Note that evaluating Jk and wk involve evaluating the first derivative of hk
and ρ, respectively. Hence it is implicitly assumed that hk and ρ are contin-
uously differentiable. Intuitively, the weighting function can be thought of as
a correction ensuring the consideration of the robust loss in the underlying
least-squares problem. More formally, it is a consequence of the chain-rule
when applied to the nonlinear considered robust cost function.

The basis for solving (3.4) is to approximate the non-linear model locally
by a weighted linear model. Each iteration is as follows. First, the residual
vector and the Jacobian and weight matrices are evaluated based on the cur-
rent estimate of θ. Then, the update step ∆θ is computed by solving the
weighted least-squares problem (3.8). And finally, the estimate is updated
according to (3.7). Note that (3.8) is a linear least-squares problem, and so
it can be solved in closed form. The solution —which may or may not be
unique—satisfies the damped normal equations,6(

J>WJ + λI
)
∆θ = J>Wr (3.10)

Solutions to these equations are often computed via specialized methods that
exploit the structure and sparsity of the problem, and scale well when θ is
high-dimensional (Saad, 2003; Davis, 2006).

6The normal equations are so-called because they state that the residual must be normal,
i.e. orthogonal, to the columns of the weighted Jacobian matrix.
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The Gauss-Newton and Levenberg-Marquardt methods are special cases
of the method just described, with specific policies for choosing α and λ. In
Gauss-Newton, the damping factor is set to λ = 0, while the step size α is
computed by searching along the line defined by ∆θ, a procedure known as
line-searching (Armijo, 1966; Nocedal and Wright, 1999). For Levenberg-
Marquardt, the step size is fixed at α = 1 and the damping factor λ is chosen
according to how much the overall loss decreases in the linear vs. the non-
linear problems Conn et al. (2000).



4
Theoretical Background on M-Estimation

The quality of an estimator, under the ideal model assumptions, is usually
measured in terms of its bias and efficiency. An estimator it unbiased if, on
average, the parameter that it estimates matches the true parameter, and it is
efficient if, out of all possible estimators, it has the lowest uncertainty. The
ideal model assumptions, however, rarely hold in practice. Near-optimality
under slight deviations from these assumptions is measured quantitatively
by the gross error sensitivity and breakdown point. Desirable properties of
an M-estimator are a high efficiency in a neighborhood of the ideal model,
and a large gross error sensitivity and breakdown point. There is always a
compromise between an estimator’s quality and robustness, and M-estimation
provides a mechanism for striking a trade-off between the two.

Before moving on to the definitions, some notation is in order. Let η

denote an M-estimator of θ with loss function ρ. η is a mapping from a set
{zk} of observations to the solution of (3.4),

η (z) = arg min
θ
` (z; θ) (4.1)

where ` is the robust sum-of-squares function,

` (z; θ) = 1
2

n∑
k=1

ρ
(
‖zk − hk(θ)‖2

)
(4.2)
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and z is the block-vector

z =


z1
...

zn


Let Z be the random variable formed by grouping the Zk into a vector, where
the Zk is the random variable such that zk is the realization of Zk.

Note that the M-estimator can be regarded as a random variable, as it is
function of the observations, and the observations themselves are realizations
of random variables. As such, η has a probability distribution. The distri-
bution of η, often referred to as the sampling distribution, serves as a basis
for performing statistical tests and making decisions. In the remainder of this
chapter, η (Z) will denote the M-estimator as a random variable, and the dis-
tribution over the M-estimator induced by Z will be referred to the sampling
distribution of η.

Classical terminology from estimation, also applies when using M-
Estimators. Particularly, the CramÃl’r-Rao bound can be used to characterize
a lower bound on the error variance of the estimator. Its definition requires
revisiting the concept of biased estimators and the Fisher Information Matrix
first.

Definition 4.1 (Bias). The bias of η is defined as the difference between
the mean of its sampling distribution, and θ. That is,

Bθ(η) = EZ [η (Z)]− θ (4.3)

where EZ [ · ] denotes the expectation with respect to Z. Hence η is unbiased
if Bθ(η) = 0.

The bias is the extent to which the estimator differs from the parameter in
a systematic manner, i.e. non-randomly. Intuitively, it quantifies how accurate
the estimator would be, on average, if it were used repeatedly on different sets
of observations.
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Definition 4.2 (Fisher information matrix). The Fisher information ma-
trix of θ is defined as the covariance matrix of the score.1 That is,

Iθ = EZ
[
∂

∂θ
ln f (Z) ∂

∂θ
ln f (Z)>

]
where f is the probability density function of the distribution over Z.

The Fisher information matrix is a function of the model. It can be loosely
interpreted as a quantitative measure of how observable θ is, on average. For
any given set of observations, if the log-likelihood is peaked around θ, then
the observations carry a lot of information about θ. On the other hand, if the
log-likelihood is spread out, then the observations are ambiguous about θ.
The Fisher information matrix Iθ quantifies this notion of curvature of the
log-likelihood function, and averages over all possible sets of observations.

Theorem 4.1 (Cramér-Rao lower bound). The covariance matrix of η

around θ is bounded from below,2

EZ
[
(η (Z)− θ) (η (Z)− θ)>

]
�
(

I + ∂Bθ

∂θ

)
I−1

θ

(
I + ∂Bθ

∂θ

)>
+ BθB>θ

where Bθ and Iθ are as defined in 4.1 and 4.2, respectively. This bound is
also known as the Fréchet-Cramér-Rao lower bound.

Proof. For a proof, refer to a standard statistics textbook, or to the original
papers Rao (1945); Cramér (1946).

The Cramér-Rao bound establishes a limit on the expected squared error
between an estimator and the true parameter. It states that, for a given number
of observations, the variance of the estimator cannot be arbitrarily small. For
the special case where θ is scalar and η is unbiased, the bound becomes

VarZ [η (Z)] ≥ I−1
θ

1The score is the gradient of the log-likelihood function with respect to the parameter. It is
possible to show, under mild assumptions, that EZ

[
∂

∂θ
ln f (Z)

]
= 0, i.e. that the score has

zero mean. Hence the Fisher information matrix is the covariance matrix of the score.
2The notation A � B means that A−B is positive semi-definite.
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since EZ [η (Z)] = θ. In this case, the efficiency of η is defined as

Eff (η) = I−1
θ

VarZ [η (Z)] (4.4)

By definition, an estimator cannot have an efficiency greater than 100%. The
only estimator with an efficiency of 100% is the minimum-variance unbiased
estimator.

4.1 The Influence Curve

The influence function is a design tool that can be used to visually assess
the robustness of an M-estimator. Intuitively, it quantifies how the estima-
tor would react if a small perturbation was added to a single observation.
Formally, it is defined as the asymptotic bias caused by contaminating an ob-
servation by an infinitesimal amount, standardized by the probability mass
of the contamination. The gross error sensitivity, a quantitative measure of
robustness, is defined in terms of the influence function.

It is possible to derive an analytic expression for the influence function
of η in (4.1) by applying the measure-theoretic definition in Hampel (1974),
and following the steps in Chapter 4 of Neugebauer (1996) for a non-linear
least-squares regression estimator. This leads to

IF (z; η) = EZ

[
∂2`

∂θ∂θ>
(Z; η (Z))

]−1
∂`

∂θ
(z; η (z)) (4.5)

This expression is general and holds for any M-estimator of the form (4.1)
where ρ′ and the hk are continuously differentiable.

It is interesting to consider special instances of the estimation problem,
where the influence function takes a much simpler form. For instance, in the
linear regression problem hk(θ) = x>k θ for all k = 1, . . . , n and the zk are
scalar. In this case the influence function simplifies to

IF (z; η) = EZ

[
n∑
k=1

ZkZ
>
k

]−1 n∑
k=1

wkrk|θ=η(z) zk (4.6)

where the notation ·|a=b denotes evaluated at a = b. Equation (4.6) states
that, in a linear model, the influence exerted by a single observation yk is pro-
portional to the weighted residual wkrk. For the special case of a Gaussian
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model, the wk = 1 since ρ (t) = t, and thus the influence is a linear, un-
bounded function of the residuals. For a detailed derivation of the influence
function for a linear measurement model with scalar observations, see Cheng
(1992).

The definition of the influence function can be simplified, when consid-
ering the simplest possible problem, i.e. assuming a scalar θ ∈ R and a mea-
surement model hk(θ) = θ that directly measures θ. These simplifications
allow the influence function to be expressed as a function of the residual, or
the squared error. Replacing the derivatives of ` in (4.5) and separating out
the contribution of a single residual r leads to

IF (r; η) ∝ ρ′
(
r2
)
r (4.7)

This is the form of the influence function defined in most tutorials and intro-
ductory textbooks on M-estimation.

The derivative ρ′ of ρ is known as the weight function, and s is a tun-
ing constant that controls the scale of the loss function.3 Note that some M-
estimators have influence functions that tend to zero as r → ∞; in other
words, as the residual becomes increasingly large, the observation is eventu-
ally ignored. These are known as redescending M-estimators. Examples of
influence curves are shown in Figure 4.1.

4.2 Gross Error Sensitivity

The gross error sensitivity of an estimator is defined as the maximum norm
of the influence curve. It is a global robustness criterion, as it expresses the
maximum effect that an outlier —a gross error— can have on the estimator.
Formally, the gross error sensitivity is defined as

GES (η) = sup
z
‖IF (z; η)‖ (4.8)

For the special case of a scalar parameter and a linear location model, this
expression simplifies to

GES (η) ∝ sup
t>0

ρ′(t)
√
t (4.9)

3Agamennoni et al. (2015) propose a method for automatically tuning these constants to
a set of data, based on an equivalence between certain types of M-estimators and elliptical
distributions.
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Figure 4.1: Influence curves for the M-estimators listed in table 3.1, under a linear location
model. The influence function for a linear location model is given by (4.7). All of the influence
functions shown here are bounded from above. The upper bound is the gross error sensitivity.

This is the expression adopted by most tutorial-level textbooks and introduc-
tory material. Note that the gross error sensitivity can be infinite; in fact, this
is the case for the Gaussian distribution.

4.3 The Maximum Bias Curve

The maximum bias function is the maximum possible bias for a given propor-
tion of outliers. In other words, suppose that a fraction ε of the observations
are contaminated, i.e. are generated from a different distribution than the rest.
The maximum bias is equal to the maximum value of ‖Bθ(η)‖2 over all pos-
sible contaminating distributions. Formally,

MB (ε; η) = sup
g
{‖Bθ(η)‖ : Z ∼ (1− ε)F + εG} (4.10)

where F is the uncontaminated, probability distribution over Z with proba-
bility density function f , and G is the contaminating distribution with density
g.4

4Hence the notation (1− ε)F + εG denotes a joint probability distribution over Z with
probability density function (1− ε) f (z) + ε g (z).
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Figure 4.2: Maximum-bias curves for the M-estimators listed in table 3.1, under a linear
location model. The maximum-bias function for a linear location model is given by (4.11a)
and (4.11b). Beyond a certain fraction of contamination the maximum bias becomes infinite.
This is the breakdown point.

For the special case where the parameter is scalar and the model is a linear
location model, the maximum bias function becomes

MB (ε; η) = |θε| (4.11a)

where θε is the solution to the implicit equation

(1− ε) EZ
[
ρ′
(
(Z − θ)2

)
(Z − θ)

]
+ ε = 0 (4.11b)

Refer to Martin and Zamar (1993) for a detailed derivation of the maximum
bias function for a slightly more general model.

Figure 4.2 plots the maximum-bias curves for the M-estimators in table
3.1. The curve is plotted for values of ε in between 0% and 50%, since be-
yond 50% it becomes impossible to distinguish between the nominal and the
contaminating distributions. For each loss function, the curve is plotted by
approximating the expectation in (4.11b) by a sample average, and solving
the implicit equation with an iterative root-finding method. Note that, beyond
a certain ε, the maximum bias becomes infinite.
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4.4 The Breakdown Point

The breakdown point is a quantitative indicator of robustness. It indicates the
maximum proportion of outliers that the estimator can handle without result-
ing in an arbitrarily large bias. Formally, the breakdown point is is defined in
terms of the maximum bias curve as

BP (η) = sup
0≤ε<1/2

{ε : MB (ε; η) <∞} (4.12)

A higher breakdown point corresponds to higher robustness. For the sample
mean the breakdown point is 0%, while for the sample median it is 50%,
which is the maximum possible value.

The breakdown point can be read directly from the maximum-bias curve.
For instance, from figure 4.2, both the Huber and Laplace M-estimators have
a breakdown point of 50%, since their maximum-bias curves become infinite
at ε = 1/2 . On the other hand, the Cauchy and Welsch M-estimators have
lower breakdown points —around 25% and 10%, respectively.



5
Robust Estimation in Practice

So far, we have established the theoretical framework for robust estimation.
In this chapter, we want to take a closer look at applications that may benefit
from these robust methods. The considered examples, cover different applica-
tion areas within robotics and consider three different challenges. Outlier re-
moval, consideration of non-Gaussian noise, and improving the convergence
basin for non-linear optimization. As example applications of robust estima-
tion, we consider simple polynomial least-square problems, the ICP point-
cloud alignment algorithm, and pose graph optimization. All examples were
implemented in Matlab and are made available within the supplementary ma-
terial.

5.1 Outlier Removal

Situations in which sensors or some of the subsequent processing systems fail
often result in measurement outliers. Thus, they are typically not accounted
for by the noise models used for processing their signals. A simple way to
address this, is throwing away measurements which suffers from the prob-
lems discussed above. Use of robust statistics offers a systematic approach
to handle outliers within the estimator. Thus, characterizing outliers and in-
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cluding an additional detection step becomes unnecessary. In a polynomial
least-squares and a 2d ICP example, we will consider robust estimation in the
presence of outliers.

5.1.1 Polynomial Least-Squares Example

Polynomial least-squares aims at finding coefficients of a polynomial. Based
on input data, and noisy observations, minimization of the squared-error is
used in order to obtain the estimate. At first glance, nonlinearity of the poly-
nomial might appear challenging. This, however, is not the case as polyno-
mial least-squares can be interpreted as a linear regression problem with a
higher amount of input data. That is, we consider the measurement model

hk(θ) =
n∑
i=0

θi x
i
k ,

where θ ∈ Rn+1. Interpretation as a linear regression is straight forward by
defining a new set of independent input variables xi,k := xik. This results in
the linear regression observation model

hk(θ) =
n∑
i=0

θi xi,k .

Experiment Setup

In this example we consider polynomial least-squares in the presence of out-
liers. Inliers are generated by evaluating the independent variables on the
ground truth model and corrupting the result with Gaussian noise. A prede-
fined share of dependent variables will be replaced by outlier values. These
values follow a different model that is not depending on the input.

For our experiment we consider the case of n = 2 with the ground truth of
the parameter θ given by θ = (1, 30, −30). The error distribution of inliers
is N (0, 1). That is, for a given value of the independent variable x, an inlier
is generated by drawing a random sample from a N (1 + 30x − 30x2, 1)
distribution. Outliers were generated using a uniform distribution on [0, 20].

The independent input of the polynomial was generated as a set of 300
equally spaced values on [0, 1]. We performed the experiments using all dif-
ferent robust loss functions and different shares of outliers ranging between
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Figure 5.1: Groundtruth and resulting fit with 45% outliers.

0% and 90%. For each case, 100 runs were used. The (classical) least-squares
solution was used as initial starting value for the iterative reweighted least-
squares algorithm. An example run with corresponding fits for the case of
45% outliers is visualized in Figure 5.1.

Results

The results of this experiment are visualized in Figure 5.2. It shows the RMSE
(averaged over the number of runs) of the inlier. Good performance for a low
share of outliers can be explained by the relationship between polynomial
least-squares and the linear case. However, as the number of outliers grows,
the Gaussian assumption becomes more and more strongly violated. It is also
not surprising that the robust estimators outperform classical least-squares as
they put a weaker emphasis on high residuals and therefore the estimates are
less harmed by the presence of outliers.

5.1.2 ICP in a Simulated 2D Box World

Given two sets of points (typically referred to as point clouds in robotic and
computer vision literature) as input, the iterative closest point (ICP) algo-
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Figure 5.2: RMSE of inliers.

rithm, originally proposed in Besl and McKay (1992), is used to minimize
the difference between these sets. This is useful (and therefore applied) in
a broad range of robotic applications involving localization, mapping, and
path planning. A typical example is aligning scans from two laser-scanners
with each other. The algorithm is carried out using three steps. First, it asso-
ciates each point of one point cloud with the closest point of the other point
cloud. Second, a transformation (involving rotations and translations) is esti-
mated that minimizes the mismatch between associated points. Finally, this
transformation is applied. This entire process is repeated until convergence.
The estimation of the transformation within ICP is usually based on a mean-
squared error criteria, i.e., it can be understood as a nonlinear least-squares
problem. Wrong associations within the first iterations of ICP appear as out-
liers in this nonlinear least-squares problem. Thus, use of robust regression
approaches promises better results and faster convergence.

The general algorithm is visualized in Algorithm 1. Formulated in this
generality, the algorithm involves two choices which resulted in an (at least
partially ongoing) academic debate. First, the choice of the algorithm that
associates the points with each other (named getClosestPonts in the pseu-
docode). Throughout this work, we will use the k-Nearest Neighbour search
for computing this. Second, the procedure that computes a transformation for
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a given association (name computeTransformation in the pseudocode) mini-
mizing some error measure between the points.

Algorithm 1: ICP
Data: Point clouds P , Q
Result: Transformation (R, t)
R ← identity matrix;
t← zero vector;
while not converged do

association :=getClosestPoints(P,Q);
(R̃, t̃) := computeTransfomration(P,Q, association);
P := applyTransformation(R̃, t̃, P );
R ← R̃ R;
t̃← R̃ t + t̃;

end

A very efficient solution exists, when the least-squares error measure is
used, that is, when minimizing

r(R, t)2 =
N∑
i=1
||yi −Rxi − t||2

for two sets of vectors where yi is assumed to be the transformed vector xi.
It was proposed by Arun et al. (1987) and is based on three steps. First, the
means y, x of both sets are computed. Then we compute the singular value
decomposition (see Golub and Van Loan (2013)) UΣV∗ of

N∑
i=1

(yi − y) · (xi − xi)>

Finally, a minimizer of r(R, t)2 of obtained by choosing R = UV∗ and
t = y − Rx. This, so called, point-to-point error metric was used in the
original paper by Besl and McKay (1992).

A point-to-plane metric was proposed by Chen and Medioni (1992). It is
given by

r(R, t)2 =
N∑
i=1

((yi −Rxi − t) · ni)2 .

In this metric yi and xi are the same as above and ni is the normal at yi.
As the actual plane (or line in case of 2d ICP) is not directly known for a
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given set of points, ni is computed empirically from neighboring points. In
the literature, it was observed that the point-to-plane metric outperforms the
point-to-point approach, e.g. see Rusinkiewicz and Levoy (2001). However,
it does not give rise to a computational similarly nice solution. Therefore,
linear least-squares is used to obtain the desired result as presented in Low
(2004).

Example Setup and Results In our example, we will use the point-to-
plane error metric and improve its convergence properties by replacing lin-
ear least-squares with a robust M-Estimator. In our setup, we consider a 2d
case with two laser scanners positioned in a room with dimensions (width ×
length) 10m×20m. The first scanner is located at (2, 3) with an angle of 0◦.
The second scanner is located nearby, that is at (2.2, 3.1) with an angle of
5◦. Both scanners have an opening angle of 180◦ and measure ranges with a
resolution of 1◦. The standard deviation of the range measurements is 0.03m.
A typical (outlier-free) scan is visualized in Figure 5.3. Outliers were gener-
ated by corrupting a predefined share of correct range measurements (which
are randomly selected) with additional noise. The distribution for this out-
lier noise is a zero-mean gaussian with 1m standard deviation, i.e. it is much
stronger compared to the true measurement noise.

The experiments were carried out by considering different shares of out-
liers (between 0% and 90%). For each share of outliers we performed 2000
scans and subsequent runs of the ICP algorithm using different m-estimators.
Our results are shown in Figure 5.4. Similar, to the polynomial least-squares
example, it can be seen that the Gaussian approach is outperformed by all
m-estimators.

5.2 Non-Gaussian Noise Modeling

In a probabilistic view on linear regression, it was seen as a maximum like-
lihood estimator for the case of Gaussian. That is, the noise distribution is
symmetric around the mean. From the relationship between the presented ro-
bust estimators and elliptical distributions, it can be seen that these estimators
also implicitly assume the underlying noise model to be symmetric. This ex-



5.2. Non-Gaussian Noise Modeling 255

-4 -0.5 3 6.5 10
x [m]

0

6

12

18

y 
[m

]

Figure 5.3: Outlier free scans from both scanners (blue is used for the first scanner and red
for the second) represented in their respective coordinate system. The main goal of the ICP
algorithm is to align these two scans, i.e., to find a planar transformation such that both scans
match each other as close as possible.

0 30 60 90
Outlier Share [%]

0

0.2

0.4

0.6

0.8

1

1.2

1.4

R
M

SE

Gaussian
Laplace
Huber
"Fair"
Cauchy
Geman-McClure
Welsch

Figure 5.4: RMSE of obtained transformation for different shares of outliers. The least-
squares error measure is outperformed by all other approaches. In this example use of the
Cauchy loss yielded satisfactory results even for very high shares of outliers.
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ample focuses on discussing how iteratively reweighted least-squares can be
used in scenarios involving skewed noise.

Once again we consider a polynomial regression example. We assume,
our observations to be corrupted by a biased noise model. As linear regres-
sion is minimizing the RMSE, it seems to be an unsuitable error measure
in this case. Therefore, we perform reweighting that takes the skewness of
the underlying distribution into account. The weighting function used in this
example is given by

wk(θ) =

q ·
(√

rk(θ)2 + 1
)−1

rk(θ) ≥ 0 ,

(1− q) ·
(√

rk(θ)2 + 1
)−1

rk(θ) < 0 .

The parameter q ∈ (0, 1) denotes the probability mass of the error distribu-
tion which is smaller than 0. That is, random samples coming from the side
with the stronger probability mass are downweighted and vice versa. Further-

more, the weighting term
(√

rk(θ)2 + 1
)−1

can be thought of a modified
variant of Huber’s m-estimator. It resembles Huber in that the loss function
is (approximately) quadratic near the origin and (approximately) linear far
away from the origin. It differs in the transition between these two types of
loss, which in this case occurs gradually as the residual increases.

For our example, we used a two-sided exponential distribution with dif-
ferent rate parameters as a model for (skewed) observation noise. It is given
by the p.d.f.

f(x; q, λ1, λ2) =

q λ1e−λ1 x x ≥ 0 ,
(1− q)λ2e−λ2 x x < 0 .

Here q ∈ [0, 1] and λ1, λ2 > 0. The parameter q decides on the amount of
probability mass on each side, whereas the parameters λ1 and λ2 are the pa-
rameters for the exponential distribution on each side respectively. A Laplace
distribution is obtained as a special case when q = 0.5 and λ1 = λ2.

In the example shown in Figure 5.5, we have generated a random polyno-
mial of order 3 and computed 20 evaluations equally distributed on [−5, 5].
The evaluation result is corrupted with noise distributed according to the two-
sided exponential distribution presented above. As noise distribution param-
eters we used q = 0.9 and λ1 = 1− q, λ2 = q. The resulting error density is
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Figure 5.5: Linear regression fails in the presence of skewed noise as its underlying assump-
tion considers the noise to be Gaussian.

visualized in Figure 5.6. Overall, from the results presented in Figure 5.5, it
is seen how linear regression may fail in the presence of skewed noise.

5.3 Improved Convergence for Nonlinear Optimization

Viewing iteratively reweighted least sqaures as an optimization procedure
gives rise to another interpretation of robust estimation techniques. In this
view, they can be seen as a method for improving convergence

5.3.1 Annealed M-Estimation for Improved Convergence Basin
for 2D ICP Problem

In the first ICP example, both scanner positions were close to each other
and had similar viewing angles. This is, because ICP is a local alignment
method assuming the initial value to be close to the actual solution. Use of
m-estimators cannot fully overcome this limitation. However, it is possible
to improve the convergence basin of ICP by using m-estimators. The general
setting of this example is similar to the first ICP example. It mainly differs in
the fact that it considers different distances between the laser scanners rather
than different shares of outliers.
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Figure 5.6: Density of the two-sided exponential distribution with different rate parameters
which was used for generating the noisy observations (blue). And, for comparison, a Gaussian
density with same mean and covariance (red).

Additionally to the m-estimators presented so far, this chapter will in-
volve a slightly modified version of the Cauchy loss. This estimator involves
an iteration dependent weighting function. That is, as the optimization proce-
dure evolves, the impact of the estimator is reduced. The idea behind this ap-
proach is that as the estimation procedure evolves, it becomes less necessary
to make use of the downweighting introduced by the loss function, because
this downweighting mainly serves to punish wrong point associations. The
resulting weighting is simply the original Cauchy weight with the parameter
σ being replaced by k · σ, where k denotes the current iteration.

In this example, we again consider a 10m×20m room with two laser scan-
ners. To make the involved optimization problem more challenging, several
rectangular obstacles are placed in the room. The first scanner is fixed at
(4.1, 3.1) heading up with a 5◦ rotation to the left. The second scanner is
also heading upwards with a small 5◦ rotation to the right. However, through-
out the example, its position is varied within the lower, obstacl-free part of
the room. That is, the second scanner is located at different positions on a
20 × 20 grid spread between 0.05 and 9.95 on the x-axis, and 0.05 and 7.95
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Figure 5.7: Room used in the ICP 2d convergence example. The blue dots indicate considered
positions of the second scanner.

on the y-axis. The room geometry and all locations of the second scanner are
visualized in Figure 5.7.

The results are visualized in Figures 5.8 and 5.9. They show the RMSEs
that were obtained depending on the position of the second scanner. While all
esimators achieve good results for certain positions, the convergence basin of
the annealed cauchy is the largest for all estimators.

5.3.2 Robustness to Winding Error in Pose Graph Optimization

Pose graph optimization is used in order to build a map of the environment
and obtain an estimate of the robots trajectory from relative pose measure-
ments. These measurements can be obtained from wide range of sensors in-
cluding inertial sensors and cameras. A first presentation of this approach was
given in Lu and Milios (1997). Use of robust estimation techniques helps to
avoid local minima as it systematically reduces the influence of outliers.

Here, we consider the famous Manhattan 3500 dataset as presented in
Olson et al. (2006). It consists of relative pose measurements from an robot
traveling in a 2d grid-like world. That is, in the absence of noise all turns
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Figure 5.8: Results of the annealed Cauchy estimator. Annealing leads to additionally im-
proving the convergence basin of the estimator.

would be 90◦. Additionally, the dataset contains an initial estimate of the
ground truth, which consists of 3500 robot poses.

In this particular example, we consider the use of robust estimators in
context with a winding error within the data. For this purpose, the Manhat-
tan dataset is adapted by introducing a fixed additional angular bias into each
odometry measurement. The magnitude of this bias is around 0.24◦ for each
measurement. Due to the fact, that these measurements are relative, introduc-
ing this bias in each measurement results in a strong winding error for the
entire posegraph. This served as a starting point for a nonlinear regression
based posegraph optimization in which, once again, the previously presented
loss functions were used. The results of this optimization are visualized in
Figure 5.10. With the exception of the “Fair” loss function, all other losses
outperform the Gaussian loss, i.e. simply using nonlinear least-squares. An
example visualizing the process of convergence, here for the particular case
of a Cauchy loss, is shown in Figure 5.11. There it is seen, how unwinding
happens within the optimization process.
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Figure 5.9: Convergence results for the m-estimators considered in this tutorial.
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Figure 5.10: Unweighted error for pose graph optimization using different M-Estimators.
Once again the Cauchy loss achieves the best performance in convergence speed and error
minimization.

Figure 5.11: Visualization of the posegraph optimization for the case where the Cauchy loss
was used.



6
Discussion and Further Reading

In this paper, our aim was to provide a first introduction to robust estimation
for robotics. The underlying approach considered in this work is based on
robust statistics. Thus, we focused on a concise presentation of the theoret-
ical foundations of robust statistics. Within the discussion of examples, we
focused on several typical challenges that arise in real-world robotic appli-
cations. First, handling of outliers within measurements, that can arise from
sensor failure and interferences. Second, consideration of biased and, more
generally, non-gaussian noise models. This becomes necessary as in practical
applications sensor models might be not precise enough and potentially not
account for hidden factors affecting the measurements. Finally, consideration
of nonlinearities is necessary as most real-world system models exhibit a non-
linear structure, and are prone to errors even if linearity is assumed implicitly
as is done when assuming estimated quantities to be jointly Gaussian.

There are several potential topics that are worth further reading for a bet-
ter understanding of robust statistics in robotics. First, a thorough discussion
on the theoretical background is given in the book by Hampel et al. (1986).
Second, a detailed account of (nonlinear) regression analysis is given in Se-
ber and Wild (2003), Seber and Lee (2003). Particularly, in the special case
of nonlinear regression it is worth taking a look at nonlinear optimization

263
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methods, see e.g. Nocedal and Wright (1999). Finally, deeper understanding
of the inference problem at hand is helpful for better choosing the proper
M-Estimator. Thus, it is also worth revisiting discussions of these inference
problems, e.g. Grisetti et al. (2010) in case of graph-based SLAM.
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