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Abstract— Accurate and robust real-time map generation
onboard of a fixed-wing UAV is essential for obstacle avoidance,
path planning, and critical maneuvers such as autonomous
take-off and landing. Due to the computational constraints,
the required robustness and reliability, it remains a challenge
to deploy a fixed-wing UAV with an online-capable, accurate
and robust map generation framework. While photogrammetric
approaches have underlying assumptions on the structure and
the view of the camera, generic simultaneous localization and
mapping (SLAM) approaches are computationally demanding.
This paper presents a framework that uses the autopilot’s
state estimate as a prior for sliding window bundle adjustment
and map generation. Our approach outputs an accurate geo-
referenced dense point-cloud which was validated in simulation
on a synthetic dataset and on two real-world scenarios based
on ground control points.

I. INTRODUCTION

Recent years have shown an increasing interest in using
UAVs to enable applications such as industrial inspection,
surveillance, and agricultural monitoring at much lower cost
than conventional aircrafts. In contrast to rotary-wing UAVs,
fixed-wing UAVs can cover large areas in a short amount
of time. Even some solar-powered fixed-wing UAVs have
recently demonstrated a flight endurance of several days [1].
These properties make fixed-wing UAVs the ideal platform
for mapping missions but also requires a robust framework
that efficiently processes the large amount of recorded data.
For obstacle avoidance and path planning, for instance, the
information needs to be available in the range of milliseconds
and seconds respectively. But also for search and rescue or
surveillance missions, the map needs to be available as soon
as possible.

Photogrammetric approaches for UAV mapping missions
have shown impressive results in the last decades [2], [3]
leading to several commercial products such as Pix4D.
However, these approaches are usually processed off-line and
are formulated as a batch optimization problem. Furthermore,
they often assume a nadir-looking camera, the landmarks to
lie approximately on a common ground plane, and are unable
to make use of all sensor measurements.

A major advantage of state-of-the-art SLAM ap-
proaches [4], [5] is the capability of efficiently generating
a map and simultaneously localizing the robot within this
map based on visual and inertial measurements. However,

1 All authors are with the ETH, the Swiss Federal Institute of
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this advantage can also turn into a drawback when a low-
cost camera is involved and the landmark-distance to inter-
keyframe baseline becomes too high which results in a high
uncertainty of the landmark locations. A degradation of the
map leads to a degradation of the state estimation and vice
versa. For fixed-wing UAVs that are loitering above the same
scenery, altitude drift of the estimated robot position becomes
visible in form of a map consisting of stacked landmark
layers.

To avoid these effects of scale ambiguity at high altitudes,
our method decouples state estimation and map generation
and is based on the indirect Extended Kalman Filter imple-
mentation presented in [6]. In this regard, our approach is
similar to the one presented by Irschara in [7] where weak
position and orientation priors speed up the structure from
motion calculation. However, the latter considers all infor-
mation simultaneously whereas our approach is designed to
run onboard of the UAV and to compute a dense point-cloud
once the camera poses and images are available. An overview
of our framework is given in Fig. 1: The state estimates
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Fig. 1: Framework overview for state estimation and map genera-
tion.

of the PX4 autopilot are used as camera pose priors for
feature tracking, triangulation, and are refined in a sliding
window bundle adjustment scheme. Although the framework
is presented for this specific setup it can be employed
with any sensor or state estimation setup which provides
camera pose priors. To the best of our knowledge, this paper
represents the first approach to generate a dense map onboard
of a fixed-wing UAV by decoupling state estimation and
mapping in a fixed-lag smoothing formulation. In sum, we
present a flight-tested real-time capable mapping framework
with the following benefits:
• No assumptions on the structure, such as ground plane

assumption.
• In contrast to most photogrammetric approaches we do
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not assume that the camera is mounted with a nadir
view. In our case the camera is mounted with a highly-
oblique view such that it can be used for obstacle
avoidance and map generation at the same time.

• Robust mapping with a low-cost monochrome camera
by decoupling of state estimation and map generation.

• The computational cost is kept bounded due to the slid-
ing window bundle adjustment scheme that keeps only a
subset of the camera poses in the optimization problem.
The cost for state estimation and map generation is
distributed on different boards.

The remainder of this paper is structured as follows:
Section II presents the methodology for generating a dense
point-cloud based on camera pose priors. In Section III,
the sliding window bundle adjustment is validated on a
synthetic dataset and compared to the result of the batch
bundle adjustment. The small unmanned research plane used
for the real-world experiments is described in Section IV.
Section V presents real-world experiments, which are based
on two datasets recorded onboard of the fixed-wing UAV
and includes the results of the sparse and dense mapping
framework as well as landmark accuracy validation. The
paper concludes with Section VI.

II. METHODOLOGY

The outline of the mapping algorithm is presented in
algorithm 1. The most relevant parts include feature tracking,
feature track triangulation, bundle adjustment and dense
reconstruction.

Algorithm 1 Map generation
1: For every image, retrieve initial robot pose estimate from EKF

and compute camera pose (II-A, II-B)
2: Extract feature tracks (II-C.1):
• Lucas-Kanade feature tracker
• Gyroscope measurement integration for feature prediction
• Feature bucketing
• Two-point RANSAC outlier rejection

3: Initialize landmarks (II-C.2):
• Check if landmark is well constrained
• Apply Gauss-Newton triangulation (inverse depth) [8] with

ground plane initialization
• Check if landmark location is in visible camera cone

4: Perform sliding window bundle adjustment (II-C.3)
5: Add resulting optimized camera poses to dense reconstruction

pipeline (II-D)
6: Insert landmarks into octomap (II-E)

A. EKF-based autopilot

The Pixhawk PX4 auto-pilot performs an indirect EKF-
based state estimation as presented in [6]. The Kalman filter
uses the linear acceleration and angular rates measurements
for propagation of the state equations. The dynamic and static
pressure, GPS velocity and position as well as 3D magne-
tometer measurements are used for the Kalman Filter state
update. The estimated states consist of sensor (gyroscope and
accelerometer) biases, wind field, three-dimensional airspeed

as well as the IMU’s attitude and position in WGS84 coordi-
nates. For more details about the state estimation framework
we refer to [6].

B. Transformations

The EKF estimates the position and orientation of IMU1 in
a global coordinate system. However, for mapping we need to
compute the camera pose with respect to the global mapping
coordinate system denoted by M . The transformation chain
is stated in equation 1 and involves the camera (denoted with
C), the IMU1 of the autopilot which is rigidly mounted in the
fuselage (denoted with B1), as well as the IMU2 mounted
on the sensor pod (denoted with B2) as shown in Fig. 2.

TM
C = TM

G TG
B1

TB1

B2
TB2

C (1)

with

TB2

C : Transf. of the camera w.r.t the sensorpod IMU

TB1

B2
: Transf. of sensorpod IMU w.r.t the autopilot IMU

TG
B1

: Transf. of the autopilot IMU w.r.t global system

TM
G : Transf. of the global system w.r.t mapping system

The transformation of the camera with respect to the IMU of
the sensorpod as well as the camera intrinsics and distortion
are calibrated with the standard Kalibr stack [9]. The rotation

FB2

FB1

FC

Fig. 2: Interior of the UAV platform Techpod: The PX4 autopilot as
well as its GPS receiver, magnetometer, IMU and pressure sensors
are rigidly mounted. The sensorpod is a modular unit that is used
in several UAVs.

and translation between the IMU of the sensorpod and the
IMU of the autopilot is computed with an extension of
Kalibr which was proposed by Rehder and Nikolic [10]
and capable of precise IMU-IMU transformation estimation.
Finally, the position estimate coming from the autopilot is
transformed from WGS84 coordinates into a metric UTM
coordinate system. In a last step, the orientation needs to be
aligned with the UTM coordinate system: In our case, the
IMU assumed north direction to be x. However, in UTM
coordinates, easting is x, northing is y. Consequently, the
transformation matrix TG

M results in a 90 ° rotation around
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the z-axis:

TG
M =


0 −1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

 (2)

The transformations were validated by solving an absolute
perspective n-point problem (PNP), as proposed by Kneip
and implemented in OpenGV [11]. The landmark positions
in UTM coordinates were obtained from geo-referenced
satellite images, the feature location in the image were hand-
labeled as shown in Fig. 3.

Fig. 3: Left: Landmark positions in UTM coordinates. Right:
Hand-labeled feature positions (green) and reprojected landmark
locations (red) given the camera pose estimated by the PNP.

C. Sparse point-cloud generation

The sparse map generation is presented in algorithm 1.
The most relevant parts include feature tracking, feature track
triangulation and sliding window bundle adjustment.

1) Feature Tracking: In a first step, features are extracted
based on the approach proposed by Shi and Tomasi [12].
The features are then tracked with a Lucas-Kanade feature
tracker. The gyroscope measurements of the sensorpod IMU1

are integrated between successive frames to predict the
feature location in the next frame and to constrain the
search window and limit the computational cost. Feature
bucketing ensures uniformly distributed feature observations
across the image. Eventually, a 2-point relative translation-
only RANSAC problem [13] is solved to identify and re-
ject outliers. Fig. 4 shows the feature tracks classified by
RANSAC as inliers in green and outliers in red. As visualized
in blue, a mask can be used to avoid extracting features close
to the horizon as the observation rays to the corresponding
landmarks are almost parallel which results in high landmark
position uncertainties. Alternatively, a horizon tracker or the
evaluation of the observation angles can be used to reject not
well constrained landmark observations.

1In theory, also the autopilot IMU could have been used for feature
tracking. However, the camera and IMU measurents are time-synchronized
on the FPGA and come in with a higher rate (200Hz instead of 100Hz).

Fig. 4: Feature tracking results
showing the inlier set (green),
outlier set (red) as well as
horizon mask (blue).
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Fig. 5: Feature track histogram
for 20 fps. 93 percent of the
feature tracks contain less than
50 observations.

2) Feature Triangulation: The often used direct triangula-
tion approach may suffer from local minima [7]. For better
numerical stability we use the Gauss-Newton triangulation
where the landmark location is in inverse-depth parametriza-
tion as proposed in [8]: The basic idea is that the position
of the j-th feature observed in the i-th camera frame can be
expressed in terms of the n-th camera frame:

pCifj = C(q̄CiCn)pCnfj + pCiCn

= ZCnj

(
C(q̄CiCn)

[
αj βj 1

]>
+ ρjp

Ci
Cn

)
= ZCnj

[
hi1 hi2 hi3

]
(3)

with
[
αj βj ρj

]>
=

[
XCnj

ZCnj

Y Cnj

ZCnj

1

ZCnj

]>
Equation 3 is expressed in inverse depth parametriza-

tion and α, β and ρ are the minimization variables. We
provide the complete pseudo-code in the appendix. The
Gauss-Newton triangulation shows a good trade-off between
accuracy and calculation time. Since this is an iterative
approach, the algorithm needs to be initialized appropriately.
In particular, an educated guess for the landmark position
in terms of the first camera frame needs to be set. For this,
we assume that the landmark is located on an approximated
ground plane.

3) Sliding Window Bundle Adjustment: The visual bundle
adjustment considers only the last N camera poses to retain
real-time processing, where N denotes the size of the sliding
window. The bundle adjustment is formulated in a factor
graph and optimized with Georgia Tech Smoothing and
Mapping (GTSAM) [14], [15]. The insertion of the factor
nodes, value nodes, the marginalization strategy as well as
outlier rejection is explained based on the sample factor
graph shown in Fig. 6: Once a new pose-image pair is
available, the camera pose is inserted in the factor graph
and initialized with the estimate from the Extended Kalman
Filter. To constrain the factor graph, each camera pose is
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associated with a prior factor based on the mean and standard
deviation from the EKF. The triangulated landmarks are
inserted as value nodes and connected to the individual
camera poses via reprojection factors. The reprojection error
formulation is adopted from [5]:

ejr = zj − h(TC
M lMj ) (4)

where h(·) stands for the camera projection and zj is the
feature measurement of landmark j in image coordinates.

xn+4xn+1

l1 l2

xn+2xn xn+3

Marginalized

sliding window: N = 4

fprior,n+1 fprior,n+2 fprior,n+3 fprior,n+4

freproj

fprior,n

Fig. 6: Sliding window bundle adjustment in factor graph formu-
lation.

Every reprojection factor has a Cauchy M-Estimator to re-
duce the influence of outliers2. The factor graph is optimized,
visual measurements that are still identified as outliers are
rejected and the graph is optimized again. After the graph
optimization, all landmarks and all camera poses (i.e. the
oldest one) outside of the sliding window are marginalized.
The selection of the sliding window size N constitutes
a trade-off between computational costs and accuracy of
the state estimates. The window size should be set after
evaluating the expected length of the feature tracks to ensure
that the majority of observations of the feature tracks are
included as reprojection factors in the optimization problem.
Fig. 5 shows the feature track length histogram for the dataset
I presented in Sec. V. The empirical cumulative distribution
function illustrates that around 97 percent of all feature tracks
contain less than 100 observations which corresponds to a
5.0 s sliding window. Choosing a too small value for the
sliding window results in a shorter baseline of first-to-last
camera pose in the feature track and consequently in less
constrained landmarks as well as camera poses.

D. Dense point-cloud generation

The image stream and the corresponding optimized camera
poses are then used as input for the dense reconstruction
algorithms. The dense reconstruction approaches can be di-
vided into rectification-based and patch-based methods [16],
[17]. The rectification-based methods seem more suited for
our purpose since they are computationally more efficient. In
general, the goal of rectification is to transform an arbitrarily
arranged stereo pair into a rectified virtual stereo pair, in

2The Cauchy weight is k2/(k2 + e2), where e is the residual and k is
a constant set to 3.0.

which epipolar lines become collinear and horizontal. In the
rectified stereo pair the correspondence search becomes eas-
ier since matches lie on horizontal lines of the rectified im-
ages and efficient blockmatching algorithms can be employed
[18], [19]. The output of the dense reconstruction module
is a geo-referenced dense point-cloud which is colored by
pixel intensities. The next section shortly describes the planar
and polar rectification procedures and their advantages and
disadvantages based on our camera configuration.

C1 C2
C1 C2

(b): Highly oblique(a): Nadir

Fig. 7: (a): Nadir (down-looking) camera configuration. The
epipoles are at infinity for the forward moving UAV and both,
planar and polar rectification can be used. (b): Highly-oblique
camera configuration. The epipoles might be close or even within
the images. In this case the planar rectification fails and the polar
rectification algorithm needs to be used for dense reconstruction.

1) Planar rectification: One of the properties of the
virtual ideal stereo camera is, that it has parallel optical
axes, which are perpendicular to the baseline. This ensures
that the epipoles are at infinity and hence epipolar lines
become collinear and parallel. The nadir (down-looking)
camera configuration inherently fulfills these requirements
for planar rectification as shown in Fig. 7. However in case of
an oblique camera, the epipoles might be close or even within
the images depending on the concrete motion of the fixed-
wing UAV. In that case, pixels around the epipole project
to infinitely far away points on the rectified image plane,
which would result in extremely large and distorted rectified
images. For implementation details we refer to [20].

2) Polar rectification: In contrast to planar rectification,
the approach proposed by [21] can be employed for generic
camera motion. The approach takes directly the pixel inten-
sities along corresponding epipolar lines and inserts them
into the same row of the rectified images. The rectified
images are finally built up by circularly scanning the original
images around the epipoles. A detailed description can be
found in [21]. Compared to the planar rectification, the polar
rectification algorithm is computationally more involved and
produces more outliers. To benefit from both approaches,
we keep a small buffer of frames and compute the geometry
of the current camera frame to the camera frames in the
buffer. If the epipoles are close or within all stereo pair
combinations, we use polar otherwise we employ planar
rectification.

E. Octomap interface

The generated point-cloud is inserted into OctoMap [22].
Two possible ways to insert the point-cloud exist:
• Endpoint-only: Only encodes the occupied space by

inserting the landmarks directly.
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• Ray-casting: Encodes the occupied and free space in a
probabilistic manner by casting rays from the camera
position to the landmark location which is useful for
obstacle avoidance and path-planning. However, the
calculation costs increases with the distance to the
landmark.3

The point-cloud generated onboard of the fixed-wing UAV
could then be visualized directly on the ground-control
computer if the UAV is in WiFi range.

III. SIMULATION

To validate the performance of the sliding window bundle
adjustment under realistic conditions it was simulated based
on a real-world point-cloud4 and camera poses recorded
by the presented fixed-wing UAV. The nominal flight al-
titude in the simulation is around 150 m. The camera in-
trinsics are identical to the ones used for the real-world
datasets. The camera positions are disturbed with Gaussian
white noise N (0, (0.5 m)2); the feature observations with
N (0, (0.2 pixel)2). The minimal and maximal track length
were set to 2 and 50 respectively.
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Fig. 8: Performance comparison of sliding window bundle adjust-
ment and batch bundle adjustment.

The absolute position errors in x of the disturbed input,
the result of the sliding window bundle adjustment and
of the batch bundle adjustment are shown in Fig. 8. The
accompanying data is given in Table I.

µ(|ex|) σ(|ex|) µ(|ey|) σ(|ey|) µ(|ez|) σ(|ez|)
Input 0.1610 0.1177 0.1605 0.1155 0.1431 0.0973
Sliding 0.0246 0.0150 0.0163 0.0221 0.0210 0.0165
Batch 0.0231 0.0135 0.0128 0.0073 0.0192 0.0045

TABLE I: Mean µ and standard deviation σ of the camera position
errors in meter. The batch bundle adjustment performs only slightly
better compared to the sliding window approach.

As expected, the batch bundle adjustment performs
slightly better than the sliding window bundle adjustment
since the whole factor graph is available for optimization.

3For a nominal flight altitude of around 150m and several hundred
landmarks per image ray-casting becomes computationally costly. Compare
performance discussion in [22].

4Dataset cadastre of the Pix4D example datasets.

IV. PLATFORM
The small unmanned research plane Techpod was used for

the experiments presented in this paper. It has a wingspan
of 2.60 m, classic T-tail configuration and is equipped with
one propeller. The sensor pod and PX4 auto-pilot are placed
inside the fuselage as shown in Fig. 2 and allow autonomous
mission execution such as GPS-waypoint following. The
technical specifications of the sensor and processing unit
are listed in Table II. As exteroceptive sensor it features an
Aptina MT9V034 monochrome global shutter camera cap-
turing images with a resolution of 752× 480 pixels at up to
60 fps. It is rigidly mounted with an oblique field of view of
around 45 deg. For measuring angular velocities and angular
accelerations, the sensor pod is equipped with a MEMS
inertial measurement unit (IMU). The camera and IMU are
integrated into an ARM-FPGA-based Visual-Inertial (VI)
sensor system [23] allowing hardware-synchronized IMU
and camera data. An Intel Atom CPU (four cores at 1.92
GHz) is connected to the VI sensor system and the PX4 auto-
pilot. All components are mounted on an aluminium frame
that guarantees a rigid camera-imu transformation throughout
all flight scenarios.

Sensor pod

Monochrome camera: Aptina MT9V034
IMU ADIS16448
Thermal camera FLIR Tau 2
Processing board Kontron COMe-mBT10
Processor Intel Atom (4 cores, 1.91GHz)

Auto-pilot

IMU ADIS16448
GPS uBlox LEA-6H
Processor Cortex M4F (168MHz)
RAM 192 kB

TABLE II: The sensor and processing unit, nicknamed sensor pod,
and the PX4 Pixhawk auto-pilot used for the experiments.

More technical details about the deployed camera is pre-
sented in the appendix.

V. REAL WORLD EXPERIMENTS
The mapping pipeline was evaluated based on two

datasets, denoted with Set I and Set II, which were recorded
by the fixed-wing UAV presented in Section IV. Set I is
characterized by a nominal altitude of 100 m to 150 m
and a flat scenery as shown in Fig. 3. The sparse point-
cloud generated during this flight is shown in Fig. 9. The
landmarks are inserted into OctoMap once they leave the
sliding window and are colored by height. The estimated
landmark locations agree with the ground control points
obtained from satellite data as presented in Section V-A.

Set II was recorded during the final demonstration of the
ICARUS FP7 project in March-en-Famenne, Belgium. The
nominal altitude of around 70 m is lower than in Set I as
can be seen from Fig. 10 and 12. Due to the 3-dimensional
structure, it is used to present the results of the dense
reconstruction pipeline.

A. Landmark accuracy validation

For fixed-wing UAVs it remains a challenge to obtain
high-quality ground-truth data of the camera poses. Hence,
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Fig. 9: Sparse point-cloud visualized in octomap, colored by height:
2264× 1473× 245m3 with 264793 landmarks, leaf size is 1m.

we assess the quality of our approach based on ground
control points obtained from satellite images. Care was
taken to use permanent and easily identifiable ground control
points suchs as house corners or road crossings. The process
of obtaining the ground control point is as follows: The
optimized landmark is obtained from the mapping pipeline
where every landmark is associated with the corresponding
image, keypoint and 3D position. The keypoint location in
the image is visualized and the location is labeled in the
satellite image. The results for Set I and II are presented in
Table III.

µ(|ex|) σ(|ex|) µ(|ey|) σ(|ey|) µ(|ez|) σ(|ez|)
Set I 7.9840 7.7916 3.7913 2.7068 6.3316 0.2593
Set II 2.2571 0.7771 4.5677 1.4708 3.2798 2.0935

TABLE III: Landmark accuracy validation based on two real-world
datasets. The Table shows the mean µ and standard deviation σ of
estimated landmark location to ground control points in meter. For
each set we gathered 10 ground control points.

Overall, Set II achieves a higher accuracy compared to
Set I which can be explained by the different flight altitudes.
At higher flight altitudes, the same orientation, distortion or
intrinsics error result in a larger landmark position error when
the ray is projected on the ground. Possible error sources of
the accuracy assessment include inaccuracies of the satellite
images and of the ground control point labeling process.

B. Dense reconstruction

In this section, the output of the dense reconstruction
module is presented to underline the accuracy of the bundle
adjusted camera poses. Fig. 10 visualizes the rectified im-
ages and disparity map generated by the planar rectification
algorithm.

Feature correspondences can be searched across horizontal
lines as illustrated in the top row of Fig. 10. The point-cloud
and virtual stereo pair are visualized in Fig. 11.

The generated landmarks are colored by the pixel in-
tensities of the original image and are geo-referenced in

Fig. 10: Planar rectification: The images on the top show the
rectified images of the virtual stereo pair. The images on the bottom
shows the employed mask and the disparity image seen from the
virtual stereo rig.

UTM coordinates. The inter-keyframe baseline is 1.35 m,
the epipoles are located at e1 = [990.483, 302.183] and
e2 = [1005.53, 289.519]. From visual inspection, the planar
rectification approach generates a consistent point-cloud with
few outliers.

Fig. 11: Geo-referenced point-cloud generated with planar rectifi-
cation based on two views. The inter-keyframe baseline is 1.35m.
Both epipoles are outside of the images.

This is in particular true in the well observed region below
the inter-keyframe baseline.

Analogously, the images rectified by the polar rectification
approach, the disparity map as well as the generated point-
cloud are shown in Fig. 12. Compared to the results of
the planar rectification, the point-cloud generated by polar
rectification shows decisively more outliers. As a conclusion,
the planar rectification outperforms the polar rectification
in terms of accuracy and runtime as presented in Table
V. Therefore, the usage of the planar rectification is to be
maximized to produce consistent point-clouds. Nevertheless,
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polar rectification is used in cases that the planar rectification
fails due to the geometry of the virtual stereo pair.

Fig. 12: Polar rectification: The images on the top show the rectified
images of the virtual stereo pair. The image on the bottom left
visualizes the disparity image seen from the virtual stereo rig. On
the right is the geo-referenced point-cloud generated with polar
rectification based on two views.

C. Runtime

The preliminary runtime results of the mapping pipeline
are shown in Table IV. The validation was performed on
an Intel(R) Core(TM) i7-4800MQ CPU @ 2.70GHz for
reference. The runtime results look promising and future
work will include the optimization of the pipeline in order
to make it run in real-time onboard of the fixed-wing UAV.

mean [ms] std. dev. [ms]
Feature tracking* 19.129 5.631
Feature triangulation 0.525 0.266
Bundle adjustment 26.571 17.511

TABLE IV: Runtime in ms for one frame. (*Runs in a separate thread
and does not count towards total frame processing time.)

The runtime for the planar and polar densification step
is shown in Table V. The increased complexity of the
polar rectification algorithm is revealed in the runtime. The
computational costs of both approaches can be decreased by
downsampling the original image if necessary.

Planar rectific. [ms] Polar rectific.[ms]
Rectification 6.89 15.31
Correspondence search 14.54 24.13
Point-cloud generation 4.08 6.96
Frame processing 25.51 46.41

TABLE V: Average runtime (200 runs) per image in ms for the
planar and polar rectification. The original image size (752×480)
was used for the rectification.

VI. CONCLUSIONS
In this paper we presented a robust mapping framework

that generates dense, geo-referenced point-clouds based on
camera pose priors. The novelty of this approach lies in
the use of a state-of-the-art smoothing and mapping frame-
work in combination with camera pose priors to iteratively
obtain depth estimates of the environment onboard of a
fixed-wing UAV. The sliding window bundle adjustment
was validated on a realistic synthetic dataset and achieved
comparable results to the full batch bundle approach. Real
world experiments were performed on a small fixed-wing
UAV equipped with a low-resolution monochrome camera
which was mounted with a highly-oblique view. The exper-
iments underlined the generality of the approach that does
not make any assumptions on the observed structure: The
landmark accuracy which was validated with ground control
points performed equally good for a flat as well as for
a 3D-structured scenery. The dense reconstruction pipeline
considers the oblique view by checking the geometry of the
stereo pairs and either performs planar or polar rectification.
A rigorous outlier rejection in several layers of the pipeline
ensures an accurate dense point-cloud.

The proposed framework is used as a robust backbone for
autonomous UAV missions where obstacle avoidance and
path-planning as well as autonomous landing and take-off
are required. As a next step, we seek to improve the map
coverage by feeding the map information to the path planning
and control algorithms. In future work, the free space is to
be computed in a more efficient manner, building up on
the OctoMap implementation for ray-casting. Furthermore,
for the results shown in this paper a constant camera rate
was used. By using a camera view selection algorithm, the
computational cost could be decreased.

APPENDIX
A. Gauss-Newton iterative multi-view triangulation

In this section, the pseudo-code for the iterative Gauss-
Newton triangulation from subsection II-C.2 is presented in
Algorithm 2. The notation used in the pseudo-code of the
Gauss-Newton triangulation is adopted from [8].

B. Camera parameters

The camera field of view is given by

FOV = 2 tan−1

(
nx,yx

2f

)
(5)

which computes to 77.72 ° and 54.43 ° for the horizontal
and vertical FOV respectively given the camera parameters
presented in table VI.

The ground sampling distance is then given by

GSD = xhf−1 (6)

The image footprint is given by:

IFP = GSD
[
nx ny

]T
(7)

For the nominal flight altitude of h = 200 m, one pixel
corresponds to 0.43 m on the ground and the image foot
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Algorithm 2 Gauss-Newton triangulation
T : Precision threshold
r : Measurement residual
J : Measurement Jacobian
hm,i : Observation of the feature in camera i
hp,i : Predicted observation of the feature in camera i
M : Number of observations for the feature

1: function GAUSSNEWTON(αinit , βinit , ρinit , itermax , T )
2: α← αinit, β ← βinit, ρ← ρinit

3: while ‖rlast − rcurrent‖2 > T and iter < itermax do
4: for i = 1 : all camera views M do
5: CnCCi ← CnCG · GCCi
6: CipCn ← CiCG

GpCn − CiCG
GpCn

7: hp,i ← CnCCi ·
[
α β 1

]>
+ ρ · CipCn

8: hm,i =
1

ZC,m

[
XC,m YC,m

]>
9: ri ← hp,i − hm,i . Residuals in camera coordinates

10: r ←
[
r ri

]>
. Stack residuals

11: Jp ← 1
hp,i(3)

1 0 −
hp,i(1)

hp,i(3)

0 1 −
hp,i(2)

hp,i(3)

 . J. persp. camera

12: Jα ← CnCCi
[
1 0 0

]>
13: Jβ ← CnCCi

[
0 1 0

]>
14: Jρ ← CipCn
15: Ji ← Jp

[
Jα Jβ Jρ

]
16: J ←

[
J Ji

]> . Stack Jacobians
17: end for
18: ∆← (J>J)−1J>r . J = 2M × 3, r = 2M × 1
19:

[
α β ρ

]> ← [
α β ρ

]> −∆
20: end while
21: Gpf ← 1

ρ
GCCn

[
α β 1

]> + GpCn
22: end function

print is 322.29 × 205.71 m2. N.b. that these equations are
correct for the ideal case of a nadir-looking camera.

Monochrome camera

Resolution nx, ny 752, 480
Pixel size x 6µm
Lense f 2.8mm
Max. rate 60Hz
Delpoyed rate 20Hz

TABLE VI: Camera parameters.
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