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Abstract— Estimation of angular quantities is a widespread
issue, but standard approaches neglect the true topology of the
problem and approximate directional with linear uncertainties.
In recent years, novel approaches based on directional statistics
have been proposed. However, these approaches have been
unable to consider arbitrary circular correlations between
multiple angles so far. For this reason, we propose a novel
recursive filtering scheme that is capable of estimating multiple
angles even if they are dependent, while correctly describing
their circular correlation. The proposed approach is based on
toroidal probability distributions and a circular correlation
coefficient. We demonstrate the superiority to a standard
approach based on the Kalman filter in simulations.

Index Terms— recursive filtering, wrapped normal, circular
correlation coefficient, moment matching.

I. INTRODUCTION

There are many applications that require estimation of
angular quantities. These applications include, but are not
limited to, robotics, augmented reality, and aviation, as well
as biology, geology, and medicine. In many cases, not just
one, but several angles have to be estimated. Furthermore,
correlations may exist between those angles and have to be
taken into account in the estimation algorithm. For example,
there may be dependencies between the orientations of head
and torso of a person. Another example is a robot arm with
several rotary joints that are affected by correlated noise.

Traditional approaches for estimating correlated angles are
typically based on Gaussian distributions and use classical
filtering algorithms such as the Kalman filter [1] or nonlinear
extensions thereof, e.g., the unscented Kalman filter [2].
However, Gaussian distributions are defined on n-dimensional
vector spaces rather than the proper manifold, in this case a
torus or hypertorus.

Some filtering algorithms that are particularly well-suited
for angular estimation have been proposed. They rely on
periodic probability distributions that stem from the field
of directional statistics [3], [4]. For example, Azmani et
al. proposed a filtering algorithm based on the von Mises
distribution [5], [6]. In our prior work, we proposed an
algorithm based on the wrapped normal distribution [7].
However, these approaches are one-dimensional and unable
to take correlations between several angles into account.

To address this deficiency, we propose a new filtering
algorithm for estimation of correlated angles in this paper. To
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Fig. 1: A bivariate wrapped normal probability distribution
on the torus shown as a heat map.

our knowledge, this is the first work on recursive estimation
based on toroidal probability distributions.

It should be noted that there are some directional filters that,
in a sense, take correlation between angles into account. We
have performed research on a filter based on the hyperspheri-
cal Bingham distribution [8], [9], which captures correlations
when estimating rotations represented as quaternions. A very
similar approach has independently been published by Glover
et al. [10]. Furthermore, Feiten et al. have used mixtures of
projected Gaussians to deal with 6D pose estimation while
considering correlations between different angles as well as
correlation between position and orientation [11]. However, all
of these approaches are intended for describing 3D rotations,
which have a different underlying topology, namely the group
SO(3) [12], rather than the torus. For this reason, they cannot
be used to estimate arbitrary correlated angles.

In the field of directional statistics, some previous work on
toroidal distributions can be found. In particular, multivariate
generalizations of the von Mises distribution have been
studied by several authors [13], [14]. The multivariate
wrapped normal distribution has also been considered [4,
Sec. 2.3.2], [15], which will be the foundation of the algorithm
that we propose in this paper. Furthermore, various directional
versions of the correlation coefficient have been suggested.
We use the circular correlation coefficient as defined in [4,
Sec. 8.2] and [15].

II. TOROIDAL STATISTICS

In this section, we give an introduction to toroidal statistics.
First of all, we define the necessary topological spaces. The
unit circle

S1 ={x ∈ C : ||x|| = 1}



={cos(φ) + i sin(φ) : 0 ≤ φ < 2π}

is identified with the interval S1 ≡ [0, 2π), while keeping
the topology in mind. The torus T 2 = S1 × S1 is obtained
as the Cartesian product of two circles. More generally, the
n-torus

Tn = S1 × · · · × S1︸ ︷︷ ︸
n times

= (S1)n

is obtained by the n-fold Cartesian product of circles. We
only consider T 2 in the remainder of this paper. Most of the
presented techniques can be generalized to the n-torus.

A. Toroidal Distributions

Before we look at the bivariate toroidal wrapped normal
distribution, we introduce the circular univariate wrapped
normal distribution to show how the toroidal distribution is a
generalization of the circular case.

Definition 1 (Wrapped Normal Distribution).
A univariate wrapped normal (WN) distribution is given by
its probability density function (pdf)

f(x;µ, σ) =

∞∑
j=−∞

N (x;µ+ 2πj, σ)

with x ∈ S1, location parameter µ ∈ S1, dispersion parameter
σ > 0, and normal density N (x;µ, σ).

We use the notation X ∼ WN (µ, σ) to indicate that
a random variable X is distributed according to a WN
distribution with parameters µ and σ. A WN distribution
is obtained by wrapping a normal distribution around the
unit circle. The normalization constant is already included
in the Gaussian distributions, so it does not need to be
calculated separately. This is a significant advantage compared
to other periodic probability distributions whose normalization
constants can be difficult to calculate. The WN distribution
can be generalized to the bivariate case as follows.

Definition 2 (Toroidal Wrapped Normal Distribution).
The toroidal (or bivariate) wrapped normal (TWN) distribu-
tion is given by the pdf

f(x;µ,Σ) =

∞∑
j=−∞

∞∑
k=−∞

N
(
x;µ+

[
2πj
2πk

]
,Σ

)
with x = [x1, x2]

T ∈ S1 × S1, location parameter µ =
[µ1, µ2]

T ∈ S1 × S1, and symmetric parameter matrix

Σ =

[
σ2
1 ρσ1σ2
· σ2

2

]
∈ R2×2

with correlation1 parameter −1 < ρ < 1, linear standard
deviations σ1, σ2 > 0, and multivariate normal distribution
N (x;µ,Σ).

The notation X ∼ T WN (µ,Σ) is used to indicate that
a random variable X is distributed according to a TWN

1While the linear correlation coefficient ρ can reach values −1 and 1,
we do not consider these cases because they lead to a positive semidefinite
rather than a positive definite covariance matrix.

distribution with parameters µ and Σ. Note that the parameter
matrix stems from the covariance of a bivariate normal
distribution, yet its meaning is different in the toroidal context.
An example of the TWN distribution is depicted in Fig. 2a.
It can be seen how x1 and x2 are 2π-periodic and the
distribution wraps at these locations.

B. Toroidal Moments

In analogy to the traditional linear moments, we introduce
the circular moments and subsequently generalize them to
toroidal moments.

Definition 3 (Circular Moments).
In the univariate case, the n-th circular moment (sometimes
also referred to as trigonometric or angular moment) of a
random variable x is given by

mn = E(einx) =
∫ 2π

0

f(x)einxdx ∈ C ,

where i is the imaginary unit.

Note that the n-th circular moment is a complex number,
i.e., it has two degrees of freedom. The argument of m1

determines the location of the circular mean, whereas the
absolute value of m1 determines the concentration. For this
reason, a WN distribution is uniquely determined by its first
circular moment. We generalize circular moments to the
bivariate case in the following Definition.

Definition 4 (Toroidal Moments).
For a random variable x distributed according to a toroidal
distribution, the n-th toroidal moment is given by

mn = E
([
einx1

einx2

])
=

∫ 2π

0

∫ 2π

0

f(x)

[
einx1

einx2

]
dx1dx2 ∈ C2 .

The n-th bivariate circular moment is a vector of two
complex numbers, and thus, has four degrees of freedom.

Lemma 1 (Moments of a TWN distribution).
The n-th moment of T WN (µ,Σ) is given by

mn =

[
mn,1

mn,2

]
=

[
exp(inµ1 − n2σ2

1/2)

exp(inµ2 − n2σ2
2/2)

]
,

i.e., the componentwise circular moment of a WN (µ1, σ1)
and a WN (µ2, σ2).

The proof is given in the appendix. Note that the n-th
bivariate circular moment does not depend on the linear
correlation coefficient ρ.

C. Circular Correlation Coefficient

Several circular correlation coefficients have been defined
(for example by Mardia [16], Johnson [17], Jupp [18], and
Fisher [19]). We use the definition of Jammalamadaka et al.
[15], [4], because it is intuitive, easy to work with and has a
variety of nice properties (see [15, Theorem 2.1]).



(a) A bivariate wrapped normal probability distribution with
parameters µ = [1, 6]T and Σ = [1, 0.5; 0.5, 1] Keep in mind
that x1 and x2 are 2π-periodic.
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(b) Circular correlation coefficient for a TWN distribution with
given σ1, σ2 and ρ→ 1. As can be seen, the circular correlation
coefficient ρc is significantly lower than ρ for large σ1, σ2.

Fig. 2: Toroidal wrapped normal distribution and circular correlation.

Definition 5 (Circular Correlation Coefficient).
The circular correlation coefficient of random variables α, β
with circular means µ, ν is defined as

ρc(α, β) =
E(sin(α− µ) sin(β − ν))√

Var(sin(α− µ))Var(sin(β − ν))

=
E(sin(α− µ) sin(β − ν))√

E(sin2(α− µ))E(sin2(β − ν))
∈ [−1, 1] .

Note that this definition of the circular correlation coeffi-
cient closely resembles the linear correlation coefficient

ρ(x, y) =
E((x− µ)(y − ν))√

E((x− µ)2) · E((y − ν)2)
of real-valued random variables x, y with means µ, ν. The
circular correlation coefficient is obtained by applying the
sin(·) function to the considered quantities. Similar to the
linear correlation coefficient, it holds that −1 ≤ ρc ≤ 1. For
independent α and β, we have ρc = 0, but the converse is
not necessarily true. On the other hand, we have ρc = ±1 if
and only if α = ±β + const mod 2π (assuming α and β
have full support).

Lemma 2 (Correlation Coefficient of TWN Distribution).
The circular correlation according to Definition 5 for
[x1, x2]

T ∼ T WN (µ,Σ) is given by

ρc(x1, x2) =
sinh(σ1σ2ρ)√

sinh(σ2
1) sinh(σ

2
2)

.

The derivation can be found in [15]. The TWN has five
degrees of freedom, (µ1, µ2, σ1, σ2, ρ), and it is uniquely
determined by its first toroidal moment together with its
circular correlation coefficient. The largest possible circular
correlation coefficient for a TWN distribution is depicted in
Fig. 2b.

D. Moment Matching

Moment matching is a well-known technique for a variety
of problems and we can use a similar approach in the
directional case. For univariate problems, it is natural to
match the first circular moment, which captures both location
and dispersion of the considered distribution (e.g., a WN
distribution) [7]. In the bivariate case, however, we need to

match both the toroidal moments and the circular correlation
to capture all five degrees of freedom of a TWN distribution.

An algorithm for estimating TWN parameters is given
in [15, eq. (3.4), (3.5)], which is based on calculating the
circular moments m1,1 = E(eix1) and m1,2 = E(eix2) as
well as the product expectation value E(ei(x1−µ1)ei(x2−µ2))
of some distribution and fitting a TWN distribution with
identical moments. This is not always possible, because the
resulting Σ-matrix is not necessarily positive definite and
thus, not a valid covariance matrix. Furthermore, this method
does not maintain the circular correlation coefficient ρc.

We propose a better alternative obtained by matching the
circular correlation coefficient.

Lemma 3 (Estimation of TWN Parameters by Moment
Matching).
For a given first moment m1 ∈ C2 and a given circular
correlation coefficient ρc ∈ (−1, 1), there exists a TWN
distribution with identical first moment m1 and circular
correlation coefficient ρc if and only if ρ ∈ (−1, 1), where

µ =

[
atan2(Imm1,1,Rem1,1)
atan2(Imm1,2,Rem1,2)

]
σ1 =

√
−2 log ||m1,1|| , σ2 =

√
−2 log ||m1,2||

ρ =
1

σ1σ2
sinh−1

(√
sinh(σ2

1) sinh(σ
2
2) · ρc

)
.

We give the proof in the appendix. The inverse of the
hyperbolic sine can be calculated according to sinh−1(x) =
log(x+

√
x2 + 1) [20, eq. (4.6.20)].

III. OPERATIONS ON TWN DENSITIES

In order to create a toroidal filtering algorithm, we need
to perform certain operations on TWN distributions, which
we derive in this section.

A. Convolution of TWN Densities

The convolution of pdfs is required for prediction, as we
will show in Sec. IV-A. Convolution of pdfs corresponds
to the addition of random variables, in this case, addition
modulo 2π.

Lemma 4 (Convolution of two TWN distributions).
For A ∼ T WN (µa,Σa) and B ∼ T WN (µb,Σb), we have



A+B ∼ T WN (µ,Σ) = T WN (µa,Σa)∗T WN (µb,Σb),
where µ = µa + µb mod 2π , Σ = Σa + Σb.

Proof. This result follows immediately from the convolution
formula for Gaussian distributions.

B. Multiplication of TWN Densities

To perform a Bayesian update, we need to be able to cal-
culate the product of two TWN probability density functions.
Unfortunately, the resulting function is, in general, not the
unnormalized pdf of a TWN, because TWN distributions are
not closed under multiplication. This is not surprising since
not even WN distributions are closed under multiplication
[7].

1) Problem Formulation: We seek to derive an approxima-
tion, i.e., we try to fit a TWN distribution to the true product
density. We propose to use moment matching in order to
obtain the TWN distribution of the product.

We consider two TWN densities T WN (µa,Σa) and
T WN (µb,Σb), and we try to obtain a TWN density
T WN (µ,Σ), such that the moments and circular correlation
of the renormalized true product density

T WN (µa,Σa) · T WN (µb,Σb)∫ 2π

0

∫ 2π

0
T WN (µa,Σa) · T WN (µb,Σb)dx1dx2

and the density of T WN (µ,Σ) match. The matrix Σ is
composed of σ1, σ2, and ρ, as given in Definition 2.

2) Obtaining µ and σ1, σ2: To determine µ, σ1, σ2, we
need to calculate

c =

∫ 2π

0

∫ 2π

0

f(x;µa,Σa)f(x;µb,Σb)dx1dx2

m1,1 =
1

c
E(exp(ix1))

=
1

c

∫ 2π

0

∫ 2π

0

eix1f(x;µa,Σa)f(x;µb,Σb)dx1dx2

m1,2 =
1

c
E(exp(ix2))

=
1

c

∫ 2π

0

∫ 2π

0

eix2f(x;µa,Σa)f(x;µb,Σb)dx1dx2 .

These integrals are difficult to evaluate because even the
integral over a two-dimensional Gaussian distribution can
only be evaluated numerically [21]. For this reason we use
numerical integration [22]. From m1,1 and m1,2, we obtain
µ, σ1, σ2 as given in Lemma 3.

3) Obtaining ρ: To calculate the circular correlation
coefficient, we need

ρc =
s12√
s11s22

where

s12 :=E(sin(x1 − µ1) sin(x2 − µ2))

=

∫ 2π

0

∫ 2π

0

sin(x1 − µ1) sin(x2 − µ2)

· f(x;µa,Σa)f(x;µb,Σb)dx1dx2 ,

s11 :=E(sin2(x1 − µ1))

=

∫ 2π

0

∫ 2π

0

sin2(x1 − µ1)

· f(x;µa,Σa)f(x;µb,Σb)dx1dx2 ,

s22 :=E(sin2(x2 − µ2))

=

∫ 2π

0

∫ 2π

0

sin2(x2 − µ2)

· f(x;µa,Σa)f(x;µb,Σb)dx1dx2 .

We calculate the values s12, s11, and s22 by numerical
integration. Then, we apply Lemma 3 again to obtain ρ.

As mentioned in Lemma 3, a solution does not necessarily
exist. There are different approaches to handle the cases
where moment matching is not possible. For example, we
can try to find the TWN distribution that, in some sense, is
closest to the true distribution even though it does not have
the same moments. Because this problem appears very rarely
in practice, we handle it by ignoring the measurement in these
cases. This approach is similar to the common solution of
ignoring measurement that would cause the covariance matrix
to loose the property of being positive definite in standard
nonlinear filtering algorithms, such as the UKF.

IV. TOROIDAL FILTERING ALGORITHM

We denote the system state at time step k with xk ∈ T 2

and consider the system model

xk+1 = xk + wk mod 2π

with TWN distributed system noise wk ∼ T WN (µw
k
,Σw

k ).
We interpret the modulo operator componentwise, i.e., (a, b)T

mod 2π = (a mod 2π, b mod 2π)T . The measurement
ẑk ∈ T 2 is disturbed by noise according to

ẑk = xk + vk mod 2π ,

where vk is TWN distributed measurement noise with vk ∼
T WN (µv

k
,Σv

k). The filtering algorithm consists of prediction
and measurement update steps.

A. Prediction Step

The prediction step propagates the current estimate through
time. For this purpose, we assume the system model to be
the identity. However, we allow for non-zero-mean system
noise, which allows us to model system equations which add
a known angle as well.

The predicted distribution consists of the convolution of
the estimated distribution and the system noise distribution.
This fact can be shown by calculating

fpk+1(xk+1)

=

∫
T 2

f(xk+1|xk)fek(xk)dxk

=

∫
T 2

∫
T 2

f(xk+1|wk, xk)fwk (wk)dwkfek(xk)dxk

=

∫
T 2

∫
T 2

δ(xk+1 − wk − xk)fwk (wk)dwkfek(xk)dxk

=

∫
T 2

fwk (xk+1 − xk)fek(xk)dxk

=(fwk ∗ fek)(xk+1) ,



where ∗ denotes convolution. Thus, we can directly apply
the convolution as introduced in section III-A. The resulting
algorithm is given in Algorithm 1.

Algorithm 1: Prediction of the proposed filter.
Input: estimate T WN (µe

k
,Σe

k), system noise
T WN (µw

k
,Σw

k )
Output: prediction T WN (µp

k+1
,Σp

k+1)

µp
k+1
← µe

k
+ µw

k
mod 2π;

Σp
k+1 ← Σe

k + Σw
k ;

return T WN (µp
k+1

,Σp
k+1);

B. Measurement Update Step

In order to incorporate the information from a measurement
into the state estimate, we perform a Bayesian measurement
update step. In analogy to the derivation in [7], the estimated
density is given by

fek(xk) = f(xk|ẑk) = c · f(ẑk|xk)f
p
k (xk)

= c · fvk (ẑk − xk)f
p
k (xk) ,

i.e., the renormalized product of the noise density fvk (ẑk−xk)
and the prior density fpk (xk). The density fvk (ẑk − xk) is
given by T WN (ẑk − µvk,Σ

v
k). The complete algorithm is

given in Algorithm 2.

Algorithm 2: Measurement update of the proposed filter.
Input: prediction T WN (µp

k
,Σp

k), measurement noise
T WN (µv

k
,Σv

k), measurement ẑ
Output: estimate T WN (µe

k
,Σe

k)

get fvk (ẑk − xk) = T WN (ẑk − µvk,Σ
v
k) ;

/* multiply T WN (ẑk − µvk,Σ
v
k) and

T WN (µp
k
,Σp

k) */
get c,m1,1,m1,2 by numerical integration;

µ←
[
atan2(Imm1,1,Rem1,1)
atan2(Imm1,2,Rem1,2)

]
;

σ1 ←
√
−2 log ||m1,1|| ;

σ2 ←
√
−2 log ||m1,2|| ;

get s12, s11, s22 by numerical integration;
ρc ← s12/

√
s11s22;

ρ← 1
σ1σ2

sinh−1
(√

sinh(σ2
1) sinh(σ

2
2) · ρc

)
;

/* check result */
if −1 < ρ < 1 then

µe
k
← µ ;

Σe
k ←

[
σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

]
;

else
µe
k
← µp

k
;

Σe
k ← Σp

k;
end
return T WN (µe

k
,Σe

k);

V. EVALUATION

We evaluated the proposed approach in simulations. Unless
specified otherwise, all angles are given in radians.

For comparison, we use a modified Kalman filter [1] with
two-dimensional state vector. The unmodified Kalman filter
fails completely once the periodic boundary is crossed. To
perform a fair comparison, we modify the measurement
update step of the regular Kalman filter by introducing a
preprocessing of the measurement. Before the application
of the Kalman filter update formulas, we reposition the
measurement in such a way that its distance to the mean
of the current estimate is at most π in each dimension. The
algorithm is given in Algorithm 3.

Algorithm 3: Measurement update for modified Kalman
filter.

Input: prediction N (µp
k
,Σp

k), measurement noise
N (µv

k
,Σv

k), measurement z
Output: estimate N (µe

k
,Σe

k)

/* preprocessing */
for n = 1, 2 do

if |(µp
k
)n − zn| > π then

zn ← zn + 2π sgn
(
(µp
k
)n − zn

)
;

end
end
/* Kalman filter update */
K← Σp

k(Σ
p
k + Σv

k)
−1;

µe
k
← µp

k
+ K(z − µp

k
) mod 2π ;

Σe
k ← (I2×2 −K)Σp

k;
return N (µe

k
,Σe

k);

scenario σw
1 σw

2 ρw

1n 1 1 0
1c 1 1 0.9
2n 1 0.1 0
2c 1 0.1 0.9

TABLE I: System noise parameters for the four scenarios.

We consider four scenarios (1n, 1c, 2n, 2c) with different
system noise parameters, equal (1) or different (2) noise in
the two dimensions, and uncorrelated (n) or correlated noise
(c). The parameters are given in Table I. The mean of the
system noise is zero in all cases. The zero-mean measurement
noise has parameters σv1 = 1, σv2 = 1, ρv = 0.5.

In order to evaluate the performance, we use the angular
RMSE (root mean square error) over K time steps

ej :=

√√√√ 1

K

K∑
k=1

(
min

(
(|x̂k,jµek,j |, 2π − |x̂k,jµek,j |

))2
in both dimensions j = 1, 2 separately. The angular RMSE
considers the shorter of the two possible paths between two
points on a circle.
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Fig. 3: Comparison of RMSE of Kalman filter (kf) and proposed filter (twn) over 100 Monte Carlo runs for uncorrelated
system noise and correlated system noise. Values below the diagonal mean that the proposed filter is better, values above the
diagonal mean that the Kalman filter is better. It can be seen that the proposed filter slightly outperforms the Kalman filter in
the 1n and 2n scenarios and yields significantly better results in the 1c and 2c scenarios.

scenario # outperforming runs mean error quotient
j = 1 j = 2 j = 1 j = 2

1n 73 73 1.0465 1.0520
1c 87 93 1.1601 1.2070
2n 80 55 1.0667 1.0065
2c 93 77 1.2618 1.0687

TABLE II: Results from 100 Monte Carlo runs. In each
dimension j = 1, 2, we give the number of runs where the
proposed filter outperforms the Kalman filter, as well as the
mean of the quotient of the error of the Kalman filter and
the error of the proposed filter (values larger than 1 indicate
that the Kalman filter performs worse).

We performed 100 Monte Carlos runs with K = 50 time
steps each. The results are depicted in Fig. 3. It can be
seen that the proposed filter outperforms the Kalman filter
significantly, in particular in the case of correlated system
noise.

As far as runtime is concerned, numerical evaluation of
the integrals for c,m1,1,m1,2, s12, s11, s22 is by far the most
costly step of the algorithm. Still, the algorithm is reasonably
fast overall. On a standard computer with an Intel Core i7-
4770 CPU, 16 GB RAM, and MATLAB 2013b, we can
calculate all required integrals for one time step in less than
100ms.

VI. CONCLUSION

In this paper, we presented a new method for estimating
correlated angles using directional statistics. We derived a
filter based on the toroidal wrapped normal distribution and
evaluated its performance by comparing with a standard
approach in multiple simulations. Our results suggest that
the proposed approach outperforms standard approaches,
particularly in cases of large noise and strong correlation. To
the best of our knowledge, the presented algorithms constitute
the first recursive filter on the torus that is based on directional
statistics and correctly takes periodicity into account.

So far, the proposed filter is limited to two angular
dimensions. Future work may include the generalization to
n correlated angles, i.e., estimation on the n-torus. Even

though some of the methods used in this paper can easily be
generalized to a higher number of dimensions, this general-
ization involves some additional challenges. Particularly, the
moment-based approximation of the multiplication of partially
wrapped normal densities may be difficult, as the numerical
integration used for calculating the toroidal moments does not
scale well for a higher number of dimensions. Therefore, other
algorithms for approximating the product of multidimensional
wrapped normal densities may be necessary.

We plan to extend the proposed filtering algorithm to
nonlinear system and measurement equations by applying
deterministic sampling techniques as have been used in [7]
and [23]. Furthermore, we have published some results on a
related circular-linear distribution [24], which might be used
to generalize the toroidal filter to arbitrary partially periodic
spaces.
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APPENDIX

A. Proof of Lemma 1

We introduce the abbreviation

µ
jk

:= µ+ [2πj, 2πk]T ,

and calculate∫ 2π

0

∫ 2π

0

f(x)

[
einx1

einx2

]
dx1dx2

=

∫ 2π

0

∫ 2π

0

∞∑
j,k=−∞

N
(
x;µ

jk
,Σ
)[einx1

einx2

]
dx1dx2

(a)
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∫ 2π
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∑∞
k=−∞

∫ 2π

0
N
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x;µ

jk
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)
dx2e

inx1dx1∫ 2π

0
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k=−∞

∑∞
j=−∞

∫ 2π

0
N
(
x;µ

jk
,Σ
)
dx1e

inx2dx2





(b)
=


∫ 2π

0

∑∞
j=−∞

∫∞
−∞N

(
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[
2πj
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dx2e

inx1dx1∫ 2π

0
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∫∞
−∞N

(
x;µ+

[
0

2πk

]
,Σ

)
dx1e

inx2dx2


(c)
=

[∫ 2π

0

∑∞
j=−∞N (x1;µ1 + 2πj, σ1) e

inx1dx1∫ 2π

0

∑∞
k=−∞N (x2;µ2 + 2πk, σ2) e

inx2dx2

]

=

[
exp(inµ1 − nσ2

1/2)
exp(inµ2 − nσ2

2/2)

]
.

At (a), we use the dominated convergence theorem to
interchange summation and integration. Step (b) is based
on concatenation of integrals

∞∑
k=−∞

∫ a

0

f(x+ ka)dx

= · · ·+
∫ a

0

f(x− a)dx+

∫ a

0

f(x)dx+

∫ a

0

f(x+ a)dx+ · · ·

= · · ·+
∫ 0

−a
f(x)dx+

∫ a

0

f(x)dx+

∫ 2a

a

f(x)dx+ · · ·

=

∫ ∞
−∞
f(x)dx .

We use marginalization of a Gaussian distribution at (c).
Finally, we apply the formulas for circular moments of WN
distributions as given in [7], [4].

B. Proof of Lemma 3

Proof. The equations for mean and uncertainty are obtained
by solving the system of equations[

m1,1

m1,2

]
=

[
exp(inµ1 − nσ2

1/2)
exp(inµ2 − nσ2

2/2)

]
for µ and σ1, σ2. To get the correlation parameter ρ, we solve

ρc =
sinh(σ1σ2ρ)√

sinh(σ2
1) sinh(σ

2
2)

for ρ. If ρ ∈ (−1, 1), this yields a valid solution and the
resulting TWN distribution has indeed the desired first toroidal
moment and circular correlation coefficient. If, conversely,
ρ /∈ (−1, 1), there exists no TWN distribution with the desired
properties, because it is a necessary condition that ρ fulfills
this equation. The intuition why such a TWN distribution
does not necessarily exist is depicted in Fig. 2b.
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