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Abstract—On-line fault-detection in uncertain measurement
and estimation systems is of particular interest in many applica-
tions. In certain systems based on the Kalman filter, this test can
be performed by checking whether hyperellipsoids overlap. This
test can be applied to detecting failure in the system itself or in
the sensors used to determine the system state. To facilitate the
practical application of such tests, we describe a simple condition
for overlap of two ellipsoids and propose an efficient algorithmic
implementation for testing this condition. There are applications
in many other areas, such as collision avoidance or computer
graphics. Our proposal makes use of Leverriere’s algorithm
and Sturm’s theorem, a result of algebraic geometry. Thus, no
approximative methods, such as root finding or minimization are
needed. Furthermore, the complexity of the algorithm is fixed for
a fixed problem dimension.

I. INTRODUCTION

This paper is concerned with fault-detection in digital control
systems. Wrong behavior of systems with noisy measurements
and a system model incorporating uncertainty, can lead to
an infeasible system state, misleading information about the
true system state, or wrong control decisions. In this paper,
we are concerned with fault-detection in such systems. The
development of efficient algorithms solving this problem makes
on-line and real-time applications possible.

System faults can be understood in two possible ways. First,
a fault can happen in the system itself. This happens when
system components fail or do not behave in an expected way.
In this situation the model loses its accuracy and validity in
describing the real behavior of the system. Second, a fault can
happen in the sensor or measurement system. This leads to a
wrong estimate of the actual system state and possibly wrong
control decisions. Thus, it is of interest to detect errors, which
occur at unknown time, having an unknown intensity.

Our investigation is done in the setting of a linear system
with Gaussian disturbances and a noisy linear measurement
equation. In this situation, one of the possible approaches to
fault-detection is a two ellipsoid intersection test, which reaches
back to the seventies and was initially proposed by Kerr[12].
Detecting a fault is performed by comparing the true system
evolution with an a priori estimate. In this setting, a Kalman
filter is used to calculate an optimal estimate of the true system
state. The a priori estimate is obtained without incorporation

of the observations. Ellipsoidal confidence regions are placed
around both estimates. Our test is based on checking whether
both confidence regions intersect. This approach is conservative
in recognizing possible system or measurement fault.

Especially in time-critical systems, an efficient and robust
algorithm for checking ellipsoid overlap is important, as the
efficiency of our failure-detection relies on the efficiency of
the ellipsoid overlapping test. This test is usually performed by
minimizing a specific function or by root finding. In the case
of root finding, checking the ellipsoid intersection is easy for
low problem dimensions. Solutions to polynomial equations
can be given directly for polynomials of degrees lower than
five. The Abel-Ruffini theorem states, that a general algebraic
solution to this problem does not exist. For a direct test of
overlap of higher dimensional ellipsoids, a different approach
has to be taken.

A. Main Contribution

In this paper, we propose a new test for ellipsoidal overlap,
which works for arbitrary high dimensions and does not make
use of approximate methods. The execution time is fixed for
a given system with fixed problem dimension. We formulate
the question of ellipsoid overlapping as a convex optimization
problem. This formulation is based on the ideas presented in
[8]. A similar formulation was originally made in [9], [10],
[17] for testing the intersection of two ellipsoids and for testing
the intersection of an ellipsoid with a strip.

We interpret this problem formulation in a way that makes
searching for the actual minimum unnecessary. It is sufficient
to count roots of the convex function. We show that this is
equivalent to counting distinct roots of a certain polynomial.
Sturm’s theorem is used, as it offers a way to do this without
approximate methods.

Ellipsoids are often of special interest, because they offer
a good approximation of convex objects. Thus, testing for
overlap has applicability to many other areas, such as physics,
computer graphics (e.g., game development and computer aided
design), or collision avoidance.

The proposed intersection test is applied to a fault-detection
scenario in the system described above. This application is of



particular interest in the field of embedded or real-time systems,
because limited ressources and a constrained computational
time present an important challenge.

B. Related Work

1) Related work on fault-detection: Fault-detection is up to
now an active area of research [7]. The approach discussed here
is originally based on [12], [13], [14]. This work was extended
algorithmically in [20], [21]. A slightly different approach to
fault-detection is based on a χ2-test, which was presented in
[4].

2) Related work on ellipsoid overlap testing: In [15], an
approximate method is presented for testing ellipsoid intersec-
tion. An algebraic condition similar to ours was developed in
[19] with restriction to three dimensions. It makes use of root-
counting as well, while taking a slightly different mathematical
approach. We believe this condition also to be generalizable to
the n-dimensional case. Testing ellipsoid overlap by observing
eigenvalue behavior is proposed in [1].

C. Overview

In the next Section, we present some preliminary results.
This are Sturm’s theorem for polynomial root counting and
Leverierre algorithm for computing the resolvent of a matrix.
In Section III, we consider a linear system and formulate
the failure condition. This condition is used to motivate the
ellipsoid overlapping test. Section IV contains the derivation
of a simple condition for ellipsoid intersection. A robust
algorithmic implementation of the test is proposed in Section
V. Finally, we conclude this paper in Section VI and give an
outlook of further research.

II. PRELIMINARIES

A. Sturm’s Theorem

Sturm’s theorem is a result from algebraic geometry, which
enables counting real roots of polynomials in a given in-
terval without explicitly computing them. The basic idea is
generating a special sequence of polynomials, the so-called
Sturm sequence. The first two elements of this sequence are
the polynomial of interest and its derivative. The remaining
elements are generated using the Euclidean algorithm. Root
counting is implemented by evaluating the whole sequence of
polynomials at the interval borders and comparing the number
of sign changes in the computed value sequences.

Counting all real roots in a given interval using Sturm’s
theorem is only possible for square-free polynomials, i.e., poly-
nomials without repeated roots. The result can be generalized
to polynomials with repeated roots, when one is only interested
in distinct roots. For this general case Sturm’s theorem still
holds in the sense, that roots are counted without multiplicity.
First we define the Sturm sequences (often also called Sturm
chains) as described above.

Definition 1: Let p(λ) be a square-free polynomial and let
rem(p, q) denote the remainder from a polynomial division of

p and q. The sequence of polynomials

p0(λ) := p(λ) ,
p1(λ) := p′(λ) ,
p2(λ) := −rem(p0, p1) ,

...
pn(λ) := −rem(pn−2, pn−1)

(1)

is called the Sturm sequence of p(λ).
Theorem 1 (Sturm): Let a, b ∈ R with a < b and let p ∈

R[λ] be square-free. The number of real roots of p(λ) in (a, b)
is given by σp(a)− σp(b), where σp(a) is the number of sign
changes of the Sturm sequence of p(λ) evaluated at a.

For an efficient implementation, it is not necessary to keep
the whole Sturm sequence in memory. It is sufficient to
evaluate each polynomial in the sequence immediately after its
computation. See [3] and [5] for proofs and a further discussion
of Sturm’s theorem.

B. Leverriere Algorithm

The resolvent of a matrix plays an important role in control
engineering e.g., in the solution of state-space equations by
Laplace transformation [6]. For a matrix A ∈ Rn×n, its
resolvent is defined as

R(λ) = (λI−A)−1 ,

where I is the identity matrix and λ ∈ R. This can be
decomposed into

(λI−A)−1 =
adj(λI−A)

det(λI−A)
. (2)

Thus, the resolvent is a rational matrix, i.e., each entry is
a ratio of two polynomial functions. Leverriere algorithm is
used to compute the determinant and the adjugate of (λI−A)
simultaneously. At each step of the algorithm, one coefficient
of the determinant and one coefficient matrix of the adjugate
is calculated.

The determinant of λI−A is a polynomial of degree n and
the respective adjugate is a polynomial matrix, where each
entry has at most degree n− 1. They can be written as

det(λI−A) = λn + an−1λ
n−1 + · · ·+ a0 ,

adj(λI−A) = Tn−1λ
n−1 + Tn−2λ

n−2 + · · ·+ T0 ,

where ai ∈ R and Ti ∈ Rn×n.
One can transform (2) into

det(λI−A) I = (λI−A) adj(λI−A) ,

so that

Iλn + an−1Iλ
n−1 + · · ·+ a1Iλ+ a0I =

Tn−1λ
n + (Tn−2 −Tn−1A)λn−1 + · · ·+ T0A .

Equating the coefficients yields formulas for Ti and ai. The
highest-order coefficient an−1 and the coefficient matrix Tn−1
can be obtained directly by

Tn−1 = I , an−1 = −tr(A) .



For the remaining coefficients, a backward iteration is used,
where

Ti = Ti+1A + ai+1I , ai = −
1

n− i
tr(TiA) ,

and 0 ≤ i < n− 1.
These formulas can be used for a straight-forward implemen-

tation. See [6, p. 246] for a further discussion of Leverriere
algorithm.

III. FAULT-DETECTION IN KALMAN FILTERS

Our fault-detection system is based on a two confidence
region approach [14]. Making two estimates of the true system
state is our strategy in this approach. The first one is the
classical Kalman filter estimate after the measurement and
the second one is an a priori estimate not incorporating any
knowledge obtained from measurements and observations. This
can be seen as comparing a system model in a closed-loop and
an open-loop scenario. A confidence region is formed around
both estimates. These regions are represented through ellipsoids,
because they are easy to derive from the covariance matrices
and the means of the respective estimates. The dimension of
the ellipsoids corresponds to the dimension of the state space.

In our fault-detection test, these confidence regions are used
for testing the hypotheses

“H0: The system is in a feasible state.”
“H1: The system is in an infeasible state.”

against each other. The existence of an intersection of the
confidence regions serves as the test statistic. H0 is accepted if
both confidence regions share at least one common point. Thus,
this test has a conservative behavior and prefers to assume
that the system is in a feasible state. It should be applied to
problems, where system failure leads to a very high deviation
of the measurement from the a priori estimate.

Our considered system model is given by

x(t+ 1) = Φ(t+ 1, t)x(t) + ω(t+ 1) ,

with state vector x(t) ∈ Rn, state transition matrix
Φ(t+ 1, t) ∈ Rn×n, and a Gaussian uncertainty ω(t) ∼
N (0,Q(t)). The measurement equation of this system is

z(t) = H(t)x(t) + v(t) ,

where the observed value is z(t) ∈ Rn, the output matrix
is H(t) ∈ Rn×n, and the uncertainty of the measurement is
v(t) ∼ N (0,R(t)).

In the following, x1(t) shall denote the Kalman filter state
estimation and x2(t) the a priori state prediction. The state
estimates are given by

x1(t+ 1) = Φ(t+ 1, t)x1(t)+

K(t+ 1)[z(t+ 1)−H(t+ 1)Φ(t+ 1, t)x1(t)] ,

x1(0) = x0 + ω(0) ,

and

x2(t+ 1) = Φ(t+ 1, t)x2(t) ,

x2(0) = x0 + ω(0) .

The corresponding state covariances are

C1(t+ 1) = Φ(t+ 1, t)W(t)ΦT (t+ 1, t) + Q(t+ 1) ,

C2(t+ 1) = Φ(t+ 1, t)C2(t)Φ
T (t+ 1, t) + Q(t+ 1) ,

where W(t) := [I−K(t)H(t)]C1(t) and K(t) is the Kalman
gain

K(t) = C1(t)H
T (t)[H(t)C1(t)H

T (t) + R(t)]−1.

Two covariance bounds need to be found circumscribing our
model estimates for two given probability levels p1, p2. This
is equivalent to finding M1,M2 ∈ R, so that

P1

(
(x(t)− x1(t))TC1(t)

−1(x(t)− x1(t)) ≤M1

)
= p1 ,

P2

(
(x(t)− x2(t))TC2(t)

−1(x(t)− x2(t)) ≤M2

)
= p2 ,

where Pi are the probability measures of our respective models
with x(t) ∼ N (0,Ci(t)). The values of M1,M2 ∈ R can be
easily obtained with the help of the χ2-distribution. For the
construction of a test, we define the sets

E1 =
{
x ∈ Rn|(x− x1(t))T (M1C1(t))

−1(x− x1(t)) < 1
}
,

E2 =
{
x ∈ Rn|(x− x2(t))T (M2C2(t))

−1(x− x2(t)) < 1
}
.

The test is performed by checking E1 ∩ E2 = ∅ at each time
step. As long as both ellipsoids overlap, H0 is assumed to be
true. This has a probabilistic interpretation. Denote X as the
event that the true state is within the p2 bound around x2(t)
and denote Y as the event, that the true state is within the p1
bound around x1(t). In the case, where our covariance bounds
do not overlap, we have

P̂(X) = P̂(X ∩ Y ) + P̂(C ∩ ¬Y )

= P̂(X ∩ ¬Y )

≤ P̂(¬Y )

= 1− p1 ,

where P̂ is the conditional probability given that the confidence
ellipsoids do not overlap.

IV. ELLIPSOIDAL CALCULUS FOR TESTING ELLIPSOID
INTERSECTION

The development of a mathematical intersection condition
for two ellipsoids is performed in two steps. First, all shared
points of two ellipsoids are considered and an ellipsoid
is circumscribed around them. Each of the circumscribing
ellipsoids used here is a subset of the union of both ellipsoids.

Second, we try to minimize this circumscribed ellipsoid.
In contrary to the strategy used in [11], our ellipsoids do
not necessarily have the same center. If this minimization
procedure leads to an infeasible result, it can be assumed that
both ellipsoids do not intersect. Finally, this feasibility check



Figure 1. The ellipsoids described by proposition 1 are shown in red. They coincide with the respective original ellipsoids for λ = 0 or λ = 1. The red
ellipsoids disappear for certain λ if both blue ellipsoids do not intersect. The curve connecting the centers of both blue ellipsoids is the path of mλ

can be done through root counting or finding the minimum of
a convex function and checking if its larger than zero.

The mathematical formulation of our intersection condition
is based on an ellipsoid representation, which fits naturally into
the representation used by covariance matrices in the normal
distribution.

Notation 1: Let Σ ∈ Rn×n be symmetric positive definite
and µ ∈ Rn. Then the ellipsoid described by the set

{x ∈ Rn : (x− µ)TΣ(x− µ) ≤ 1}

is denoted by E(Σ, µ).
For properly chosen c, d,A,B, our problem formulation in

the previous section is equivalent to checking the intersection of
the ellipsoids E1 := E(A, c) and E2 := E(B, d). The matrices
A,B ∈ Rn×n are symmetric positive definite and c, d ∈ Rn.

A. Condition for Overlap

Every point within the intersection x ∈ E1 ∩ E2 obviously
satisfies

λ(x− c)TA(x− c) + (1− λ)(x− d)TB(x− d) ≤ 1 (3)

for λ ∈ [0, 1]. Every point x satisfying this equation lies within
the union of both ellipsoids. It is, however, not necessarily
within the intersection. For λ = 1, this equation describes E1
and for λ = 0 it describes E2. The following proposition shows
that the area described by (3) has ellipsoidal shape or is an
empty set.

Proposition 1: Let E1 and E2 be ellipsoids as defined above.
The set of points satisfying (3) for λ ∈ (0, 1) is either empty,

or one single point, or an ellipsoid Êλ := E(Ê−1λ ,mλ), where

Êλ = Eλ/K(λ) ,

Eλ = λA + (1− λ)B ,

mλ = E−1λ (λAc+ (1− λ)Bd) ,
K(λ) = 1− λcTAc− (1− λ)dTBd+mλEλmλ .

Proof: By an algebraic transformation, (3) can be trans-
formed into

(x−mλ)
TEλ(x−mλ) ≤ K(λ). (4)

This is an ellipsoid for K(λ) > 0, because Eλ is positive
definite and division by K(λ) yields our ellipsoid formula. For
K(λ) = 0, this set contains only mλ. For K(λ) < 0, division
of (4) by K(λ) results into an inequality, which is not satisfied
by any x ∈ Rn.

Even if E1 and E2 do not overlap, the ellipsoid Êλ described
by this proposition exists for λ close to 0 and 1. It always
satisfies

E1 ∩ E2 ⊆ Êλ ⊆ E1 ∪ E2.

We focus our further attention on K(λ), as it will be of
particular importance for our overlap test.

Remark 1: Another known representation [16] of K(λ) is

K(λ) = 1− λ(1− λ)(d− c)TBE−1λ A(d− c) ,

which is equivalent to

K(λ) = 1− vT
(

1

1− λ
B−1 +

1

λ
A−1

)−1
v ,

where v = d − c. It is, however, important to point out that
K(λ) is convex.



Figure 2. K(λ) is convex and only becomes negative for some λ on (0, 1),
if both ellipsoids do not overlap.

Proposition 2: The ellipsoids E1 and E2 share no common
point if and only if λ∗ ∈ (0, 1) exists with K(λ∗) < 0, where
K(λ) is defined as in proposition 1.

Proof: We assume the existence of λ∗ ∈ (0, 1), so that
K(λ∗) < 0. According to proposition 1, the existence of an
intersection would imply the existence of an circumscribing
ellipsoid with center mλ∗ ∈ E1 ∪ E2. From K(λ∗) < 0 it
follows that no point satisfies (4) for our fixed λ∗ and thus,
neither a circumscribing ellipsoid nor common points exist.

Now, we assume that no intersection exists. In this case, we
observe that mλ is still a continuous function on [0, 1] leading
from m0 = d to m1 = c. From this continuity follows the
existence of λ∗ ∈ (0, 1), where mλ∗ 6∈ E1 ∪ E2. It follows that
x = mλ∗ must not satisfy (4). This can only be the case for
K(λ∗) < 0.

B. Example

We consider the covariance matrices

C1 =

(
0.75 −0.08
−0.08 0.3

)
, C2 =

(
0.6 0
0 0.06

)
.

The ellipsoids E(C−11 , (0, 0)T ) and E(C−12 , (0,−0.5)T ) inter-
sect. The ellipsoid, which is bounding the intersection region
never vanishes (shown in the first line of figure 1). If the
position of the first ellipsoid is altered to E(C−11 , (0, 0.35)T ),

then both ellipsoids do not intersect anymore and thus, the
bounding ellipsoid disappears for certain λ (shown in the
second line of figure 1).

V. ALGORITHMIC IMPLEMENTATION OF THE
INTERSECTION TEST

In this section, the preceding mathematical results will
be used for developing an algorithm that tests the existence
of an intersection of arbitrary n-dimensional ellipsoids. This
algorithm checks the condition formulated in proposition 2.

Using the convexity of K(λ), there are two possible
strategies. First, it would be possible to find a minimum of K(λ)
using a convex optimization method. Finding the minimum of
K(λ) is, however, not necessary for the test. It is sufficient
to check, whether K(λ) has two distinct real roots on (0, 1).
The existence of two real roots implies (due to convexity of)
the existence of λ∗ ∈ (0, 1) where K(λ∗) < 0.

Our proposed strategy is counting roots of the rational
function K(λ) on (0, 1), which is equivalent to counting roots
of the polynomial det(Eλ)K(λ), because det(Eλ) has no roots
on (0, 1). This reduces the basic problem to counting the roots
of a polynomial instead of a rational function. The following
transformation is made

det(Eλ) = det(λA + (1− λ)B)

= det(λ(A−B) + B)

= det(λI− (−)B(A−B)−1) det(A−B) ,

where A and B are defined in the same way as in proposition 1.
This makes Leverriere algorithm applicable, which yields

det(λI− (−B)(A−B)−1) , adj(λI− (−B)(A−B)−1) .

The complete overlap test is presented in figure 3. This approach
works only if A − B is invertible. Otherwise it has to be
preceded by a modified column reduction method. For the ease
of implementation, we used a method based on singular value
decomposition (see [2]). This results in a non-direct method
for testing ellipsoid overlap, because numerical approximation
methods are used in the calculation of the singular value
decomposition. A direct method can be obtained by using
LU decomposition or modifications of some known column
reduction methods (such as [18]).

The number of operations does not depend on the mutual
position of both considered ellipsoids. Thus, the complexity
of the given algorithm is solely dependent on the problem
dimensionality n. The most expensive operation within the main
loop is the matrix multiplication. The loop itself is executed
n times. Using the straight forward matrix multiplication
algorithm, the complexity of our whole algorithm is O(n4).
For the more general case, where A−B is not invertible, our
upper complexity bound scales up to O(n5).

VI. CONCLUSION

We presented a new algorithm for checking ellipsoid
intersection and applied it to on-line fault-detection in Kalman



Input: E1 = E(A, c), E2 = E(B, d)
Output: r = 2 if E1 ∩ E2 = ∅,

r = 0 or r = 1 otherwise
% Initialization

1: m1 ← Ac−Bd
2: m2 ← Bd
3: N← (A−B)−1

4: M← −BN
5: Told ← 0
6: an ← 1
7: i← n

% A slightly modified Leverierre algorithm.
8: while i > 0 do
9: T← (MTold) + aiI

10: Pi−1 ← Pi−1 +mT
2 NTm2

11: Pi ← Pi + 2mT
1 NTm2

12: Pi+1 ← Pi+1 +mT
1 NTm1

13: Told ← T
14: i← i− 1
15: ai ← −tr(MT)/(n− i)
16: end while
17: S(λ)← det(Eλ)(1− λcTAc− (1− λ)dTBd)
18: % P (λ) is set to det(Eλ)K(λ)
19: P (λ)← P (λ) + S(λ)
20: r ← count roots of det(Eλ)K(λ) on (0, 1)
21: return r

Figure 3. Algorithm for checking overlap of ellipsoids in the simplified case,
where det(A−B) 6= 0. In this algorithm, Pi are the coefficients of λi in
P (λ) and ai are the coefficients of λi in det(Eλ). Comment lines begin
with a % sign.

filters. It is of particular interest for both, real-time control
systems and embedded control systems, where simplicity of
implementation is desirable. Our fault-detection test may also
be applied in situations, where measurement or system errors
result in extreme variable values (e.g., when there is an overflow
or the memory is corrupted).

Future research can be done in three different areas. First,
generalizing this fault-detection to other filters and control
systems is of interest. This is particularly the case, where
ellipsoids offer a reasonable description of uncertainty. Second,
implementing the intersection test in other areas of application
is also of interest. Third, improving the runtime of the algorithm
itself is important to address problems in higher dimension.
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